2 resultados para Geometric Disturbance
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
We discuss geometric properties related to the minimisation of a portfolio kurtosis given its first two odd moments, considering a risk-less asset and allowing for short sales. The findings are generalised for the minimisation of any given even portfolio moment with fixed excess return and skewness, and then for the case in which only excess return is constrained. An example with two risky assets provides a better insight on the problems related to the solutions. The importance of the geometric properties and their use in the higher moments portfolio choice context is highlighted.
Resumo:
We characterize optimal policy in a two-sector growth model with xed coeÆcients and with no discounting. The model is a specialization to a single type of machine of a general vintage capital model originally formulated by Robinson, Solow and Srinivasan, and its simplicity is not mirrored in its rich dynamics, and which seem to have been missed in earlier work. Our results are obtained by viewing the model as a specific instance of the general theory of resource allocation as initiated originally by Ramsey and von Neumann and brought to completion by McKenzie. In addition to the more recent literature on chaotic dynamics, we relate our results to the older literature on optimal growth with one state variable: speci cally, to the one-sector setting of Ramsey, Cass and Koopmans, as well as to the two-sector setting of Srinivasan and Uzawa. The analysis is purely geometric, and from a methodological point of view, our work can be seen as an argument, at least in part, for the rehabilitation of geometric methods as an engine of analysis.