8 resultados para Extended Kalman filtering
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
A tradicional representação da estrutura a termo das taxas de juros em três fatores latentes (nível, inclinação e curvatura) teve sua formulação original desenvolvida por Charles R. Nelson e Andrew F. Siegel em 1987. Desde então, diversas aplicações vêm sendo desenvolvidas por acadêmicos e profissionais de mercado tendo como base esta classe de modelos, sobretudo com a intenção de antecipar movimentos nas curvas de juros. Ao mesmo tempo, estudos recentes como os de Diebold, Piazzesi e Rudebusch (2010), Diebold, Rudebusch e Aruoba (2006), Pooter, Ravazallo e van Dijk (2010) e Li, Niu e Zeng (2012) sugerem que a incorporação de informação macroeconômica aos modelos da ETTJ pode proporcionar um maior poder preditivo. Neste trabalho, a versão dinâmica do modelo Nelson-Siegel, conforme proposta por Diebold e Li (2006), foi comparada a um modelo análogo, em que são incluídas variáveis exógenas macroeconômicas. Em paralelo, foram testados dois métodos diferentes para a estimação dos parâmetros: a tradicional abordagem em dois passos (Two-Step DNS), e a estimação com o Filtro de Kalman Estendido, que permite que os parâmetros sejam estimados recursivamente, a cada vez que uma nova informação é adicionada ao sistema. Em relação aos modelos testados, os resultados encontrados mostram-se pouco conclusivos, apontando uma melhora apenas marginal nas estimativas dentro e fora da amostra quando as variáveis exógenas são incluídas. Já a utilização do Filtro de Kalman Estendido mostrou resultados mais consistentes quando comparados ao método em dois passos para praticamente todos os horizontes de tempo estudados.
Resumo:
Trata de propor um modelo teórico de treinamento & desenvolvimento para a efetiva disseminação dos conceitos pertinentes ao integrated supply chain centrado no homem, observando as vertentes científicometodológica, digital, econõnu ca, psicológica, social e técnica e embasado na teoria do impacto, que compreende o ambiente de trabalho, experiência do aprendizado e características individuais. Com base nesse modelo, o autor advoga a necessidade de transformar os modelos de pesquisa, desenvolvimento e difusão, interação social e tomada de decisão e resolução de problemas ~ropostos por Havelock na década de 60, respectivamente, em Disseminação, Facilitação e Inovação.
Estimativa de provisões de IBNR utilizando espaço de estados e filtro de Kalman : um caso brasileiro
Resumo:
Esta dissertação pretende discutir a provisão de sinistros do tipo IBNR, bem como qual a melhor forma de estimar estas provisões. Para tanto, serão utilizados dados reais de uma grande seguradora Brasileira para um produto de seguro de um ramo Não Vida. Serão utilizados no cálculo o clássico método Chain Ladder e em contrapartida um modelo de Espaço de Estados e Filtro de Kalman, discutindo as flexibilidades, vantagens e desvantagens de se utilizar tal metodologia.
Resumo:
Este trabalho tem o objetivo de testar a qualidade preditiva do Modelo Vasicek de dois fatores acoplado ao Filtro de Kalman. Aplicado a uma estratégia de investimento, incluímos um critério de Stop Loss nos períodos que o modelo não responde de forma satisfatória ao movimento das taxas de juros. Utilizando contratos futuros de DI disponíveis na BMFBovespa entre 01 de março de 2007 a 30 de maio de 2014, as simulações foram realizadas em diferentes momentos de mercado, verificando qual a melhor janela para obtenção dos parâmetros dos modelos, e por quanto tempo esses parâmetros estimam de maneira ótima o comportamento das taxas de juros. Os resultados foram comparados com os obtidos pelo Modelo Vetor-auto regressivo de ordem 1, e constatou-se que o Filtro de Kalman aplicado ao Modelo Vasicek de dois fatores não é o mais indicado para estudos relacionados a previsão das taxas de juros. As limitações desse modelo o restringe em conseguir estimar toda a curva de juros de uma só vez denegrindo seus resultados.
Resumo:
In this article we use factor models to describe a certain class of covariance structure for financiaI time series models. More specifical1y, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. We build on previous work by allowing the factor loadings, in the factor mo deI structure, to have a time-varying structure and to capture changes in asset weights over time motivated by applications with multi pIe time series of daily exchange rates. We explore and discuss potential extensions to the models exposed here in the prediction area. This discussion leads to open issues on real time implementation and natural model comparisons.
Resumo:
The past decade has wítenessed a series of (well accepted and defined) financial crises periods in the world economy. Most of these events aI,"e country specific and eventually spreaded out across neighbor countries, with the concept of vicinity extrapolating the geographic maps and entering the contagion maps. Unfortunately, what contagion represents and how to measure it are still unanswered questions. In this article we measure the transmission of shocks by cross-market correlation\ coefficients following Forbes and Rigobon's (2000) notion of shift-contagion,. Our main contribution relies upon the use of traditional factor model techniques combined with stochastic volatility mo deIs to study the dependence among Latin American stock price indexes and the North American indexo More specifically, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. From a theoretical perspective, we improve currently available methodology by allowing the factor loadings, in the factor model structure, to have a time-varying structure and to capture changes in the series' weights over time. By doing this, we believe that changes and interventions experienced by those five countries are well accommodated by our models which learns and adapts reasonably fast to those economic and idiosyncratic shocks. We empirically show that the time varying covariance structure can be modeled by one or two common factors and that some sort of contagion is present in most of the series' covariances during periods of economical instability, or crisis. Open issues on real time implementation and natural model comparisons are thoroughly discussed.
Resumo:
A modelagem da estrutura a termo da taxa juros tem grande relevância para o mercado financeiro, isso se deve ao fato de ser utilizada na precificação de títulos de crédito e derivativos, ser componente fundamental nas políticas econômicas e auxiliar a criação de estratégias trading. A classe de modelos criada por Nelson-Siegel (1987), foi estendida por diversos autores e atualmente é largamente utilizada por diversos bancos centrais ao redor do mundo. Nesse trabalho utilizaremos a extensão proposta por Diebold e Li (2006) aplicada para o mercado brasileiro, os parâmetros serão calibrados através do Filtro de Kalman e do Filtro de Kalman Estendido, sendo que o último método permitirá estimar com dinamismo os quatros parâmetros do modelo. Como mencionado por Durbin e Koopman (2012), as fórmulas envolvidas no filtro de Kalman e em sua versão estendida não impõe condições de dimensão constante do vetor de observações. Partindo desse conceito, a implementação dos filtros foi feita de forma a possibilitar sua aplicação independentemente do número de observações da curva de juros em cada instante de tempo, dispensando a necessidade de interpolar os dados antes da calibração. Isso ajuda a refletir mais fielmente a realidade do mercado e relaxar as hipóteses assumidas ao interpolar previamente para obter vértices fixos. Também será testada uma nova proposta de adaptação do modelo de Nelson-Siegel, nela o parâmetro de nível será condicionado aos títulos terem vencimento antes ou depois da próxima reunião do Copom. O objetivo é comparar qualidade da predição entre os métodos, pontuando quais são as vantagens e desvantagens encontradas em cada um deles.
Resumo:
We consider risk-averse convex stochastic programs expressed in terms of extended polyhedral risk measures. We derive computable con dence intervals on the optimal value of such stochastic programs using the Robust Stochastic Approximation and the Stochastic Mirror Descent (SMD) algorithms. When the objective functions are uniformly convex, we also propose a multistep extension of the Stochastic Mirror Descent algorithm and obtain con dence intervals on both the optimal values and optimal solutions. Numerical simulations show that our con dence intervals are much less conservative and are quicker to compute than previously obtained con dence intervals for SMD and that the multistep Stochastic Mirror Descent algorithm can obtain a good approximate solution much quicker than its nonmultistep counterpart. Our con dence intervals are also more reliable than asymptotic con dence intervals when the sample size is not much larger than the problem size.