41 resultados para Consistent term structure models
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
This thesis is composed of three articles with the subjects of macroeconomics and - nance. Each article corresponds to a chapter and is done in paper format. In the rst article, which was done with Axel Simonsen, we model and estimate a small open economy for the Canadian economy in a two country General Equilibrium (DSGE) framework. We show that it is important to account for the correlation between Domestic and Foreign shocks and for the Incomplete Pass-Through. In the second chapter-paper, which was done with Hedibert Freitas Lopes, we estimate a Regime-switching Macro-Finance model for the term-structure of interest rates to study the US post-World War II (WWII) joint behavior of macro-variables and the yield-curve. We show that our model tracks well the US NBER cycles, the addition of changes of regime are important to explain the Expectation Theory of the term structure, and macro-variables have increasing importance in recessions to explain the variability of the yield curve. We also present a novel sequential Monte-Carlo algorithm to learn about the parameters and the latent states of the Economy. In the third chapter, I present a Gaussian A ne Term Structure Model (ATSM) with latent jumps in order to address two questions: (1) what are the implications of incorporating jumps in an ATSM for Asian option pricing, in the particular case of the Brazilian DI Index (IDI) option, and (2) how jumps and options a ect the bond risk-premia dynamics. I show that jump risk-premia is negative in a scenario of decreasing interest rates (my sample period) and is important to explain the level of yields, and that gaussian models without jumps and with constant intensity jumps are good to price Asian options.
Resumo:
Parametric term structure models have been successfully applied to innumerous problems in fixed income markets, including pricing, hedging, managing risk, as well as studying monetary policy implications. On their turn, dynamic term structure models, equipped with stronger economic structure, have been mainly adopted to price derivatives and explain empirical stylized facts. In this paper, we combine flavors of those two classes of models to test if no-arbitrage affects forecasting. We construct cross section (allowing arbitrages) and arbitrage-free versions of a parametric polynomial model to analyze how well they predict out-of-sample interest rates. Based on U.S. Treasury yield data, we find that no-arbitrage restrictions significantly improve forecasts. Arbitrage-free versions achieve overall smaller biases and Root Mean Square Errors for most maturities and forecasting horizons. Furthermore, a decomposition of forecasts into forward-rates and holding return premia indicates that the superior performance of no-arbitrage versions is due to a better identification of bond risk premium.
Resumo:
Interest rates are key economic variables to much of finance and macroeconomics, and an enormous amount of work is found in both fields about the topic. Curiously, in spite of their common interest, finance and macro research on the topic have seldom interacted, using different approaches to address its main issues with almost no intersection. Concerned with interest rate contingent claims, finance term structure models relate interest rates to lagged interest rates; concerned with economic relations and macro dynamics, macro models regress a few interest rates on a wide variety of economic variables. If models are true though simplified descriptions of reality, the relevant factors should be captured by both the set of bond yields and that of economic variables. Each approach should be able to address the other field concerns with equal emciency, since the economic variables are revealed by the bond yields and these by the economic variables.
Resumo:
Multivariate Affine term structure models have been increasingly used for pricing derivatives in fixed income markets. In these models, uncertainty of the term structure is driven by a state vector, while the short rate is an affine function of this vector. The model is characterized by a specific form for the stochastic differential equation (SDE) for the evolution of the state vector. This SDE presents restrictions on its drift term which rule out arbitrages in the market. In this paper we solve the following inverse problem: Suppose the term structure of interest rates is modeled by a linear combination of Legendre polynomials with random coefficients. Is there any SDE for these coefficients which rules out arbitrages? This problem is of particular empirical interest because the Legendre model is an example of factor model with clear interpretation for each factor, in which regards movements of the term structure. Moreover, the Affine structure of the Legendre model implies knowledge of its conditional characteristic function. From the econometric perspective, we propose arbitrage-free Legendre models to describe the evolution of the term structure. From the pricing perspective, we follow Duffie et al. (2000) in exploring Legendre conditional characteristic functions to obtain a computational tractable method to price fixed income derivatives. Closing the article, the empirical section presents precise evidence on the reward of implementing arbitrage-free parametric term structure models: The ability of obtaining a good approximation for the state vector by simply using cross sectional data.
Resumo:
This paper investigates whether there is evidence of structural change in the Brazilian term structure of interest rates. Multivariate cointegration techniques are used to verify this evidence. Two econometrics models are estimated. The rst one is a Vector Autoregressive Model with Error Correction Mechanism (VECM) with smooth transition in the deterministic coe¢ cients (Ripatti and Saikkonen [25]). The second one is a VECM with abrupt structural change formulated by Hansen [13]. Two datasets were analysed. The rst one contains a nominal interest rate with maturity up to three years. The second data set focuses on maturity up to one year. The rst data set focuses on a sample period from 1995 to 2010 and the second from 1998 to 2010. The frequency is monthly. The estimated models suggest the existence of structural change in the Brazilian term structure. It was possible to document the existence of multiple regimes using both techniques for both databases. The risk premium for di¤erent spreads varied considerably during the earliest period of both samples and seemed to converge to stable and lower values at the end of the sample period. Long-term risk premiums seemed to converge to inter-national standards, although the Brazilian term structure is still subject to liquidity problems for longer maturities.
Resumo:
This paper develops a methodology for testing the term structure of volatility forecasts derived from stochastic volatility models, and implements it to analyze models of S&P500 index volatility. U sing measurements of the ability of volatility models to hedge and value term structure dependent option positions, we fmd that hedging tests support the Black-Scholes delta and gamma hedges, but not the simple vega hedge when there is no model of the term structure of volatility. With various models, it is difficult to improve on a simple gamma hedge assuming constant volatility. Ofthe volatility models, the GARCH components estimate of term structure is preferred. Valuation tests indicate that all the models contain term structure information not incorporated in market prices.
Resumo:
We evaluate the forecasting performance of a number of systems models of US shortand long-term interest rates. Non-linearities, induding asymmetries in the adjustment to equilibrium, are shown to result in more accurate short horizon forecasts. We find that both long and short rates respond to disequilibria in the spread in certain circumstances, which would not be evident from linear representations or from single-equation analyses of the short-term interest rate.
Resumo:
Estimating the parameters of the instantaneous spot interest rate process is of crucial importance for pricing fixed income derivative securities. This paper presents an estimation for the parameters of the Gaussian interest rate model for pricing fixed income derivatives based on the term structure of volatility. We estimate the term structure of volatility for US treasury rates for the period 1983 - 1995, based on a history of yield curves. We estimate both conditional and first differences term structures of volatility and subsequently estimate the implied parameters of the Gaussian model with non-linear least squares estimation. Results for bond options illustrate the effects of differing parameters in pricing.
Resumo:
The US term structure of interest rates plays a central role in fixed-income analysis. For example, estimating accurately the US term structure is a crucial step for those interested in analyzing Brazilian Brady bonds such as IDUs, DCBs, FLIRBs, EIs, etc. In this work we present a statistical model to estimate the US term structure of interest rates. We address in this report all major issues which drove us in the process of implementing the model developed, concentrating on important practical issues such as computational efficiency, robustness of the final implementation, the statistical properties of the final model, etc. Numerical examples are provided in order to illustrate the use of the model on a daily basis.
Resumo:
A determinação da taxa de juros estrutura a termo é um dos temas principais da gestão de ativos financeiros. Considerando a grande importância dos ativos financeiros para a condução das políticas econômicas, é fundamental para compreender a estrutura que é determinado. O principal objetivo deste estudo é estimar a estrutura a termo das taxas de juros brasileiras, juntamente com taxa de juros de curto prazo. A estrutura a termo será modelado com base em um modelo com uma estrutura afim. A estimativa foi feita considerando a inclusão de três fatores latentes e duas variáveis macroeconômicas, através da técnica Bayesiana da Cadeia de Monte Carlo Markov (MCMC).
Resumo:
The objective of this work is to describe the behavior of the economic cycle in Brazil through Markov processes which can jointly model the slope factor of the yield curve, obtained by the estimation of the Nelson-Siegel Dynamic Model by the Kalman filter and a proxy variable for economic performance, providing some forecasting measure for economic cycles
Resumo:
This paper builds a simple, empirically-verifiable rational expectations model for term structure of nominal interest rates analysis. It solves an stochastic growth model with investment costs and sticky inflation, susceptible to the intervention of the monetary authority following a policy rule. The model predicts several patterns of the term structure which are in accordance to observed empirical facts: (i) pro-cyclical pattern of the level of nominal interest rates; (ii) countercyclical pattern of the term spread; (iii) pro-cyclical pattern of the curvature of the yield curve; (iv) lower predictability of the slope of the middle of the term structure; and (v) negative correlation of changes in real rates and expected inflation at short horizons.
Resumo:
There is strong empirical evidence that risk premia in long-term interest rates are time-varying. These risk premia critically depend on interest rate volatility, yet existing research has not examined the im- pact of time-varying volatility on excess returns for long-term bonds. To address this issue, we incorporate interest rate option prices, which are very sensitive to interest rate volatility, into a dynamic model for the term structure of interest rates. We estimate three-factor affine term structure models using both swap rates and interest rate cap prices. When we incorporate option prices, the model better captures interest rate volatility and is better able to predict excess returns for long-term swaps over short-term swaps, both in- and out-of-sample. Our results indicate that interest rate options contain valuable infor- mation about risk premia and interest rate dynamics that cannot be extracted from interest rates alone.
Resumo:
A tradicional representação da estrutura a termo das taxas de juros em três fatores latentes (nível, inclinação e curvatura) teve sua formulação original desenvolvida por Charles R. Nelson e Andrew F. Siegel em 1987. Desde então, diversas aplicações vêm sendo desenvolvidas por acadêmicos e profissionais de mercado tendo como base esta classe de modelos, sobretudo com a intenção de antecipar movimentos nas curvas de juros. Ao mesmo tempo, estudos recentes como os de Diebold, Piazzesi e Rudebusch (2010), Diebold, Rudebusch e Aruoba (2006), Pooter, Ravazallo e van Dijk (2010) e Li, Niu e Zeng (2012) sugerem que a incorporação de informação macroeconômica aos modelos da ETTJ pode proporcionar um maior poder preditivo. Neste trabalho, a versão dinâmica do modelo Nelson-Siegel, conforme proposta por Diebold e Li (2006), foi comparada a um modelo análogo, em que são incluídas variáveis exógenas macroeconômicas. Em paralelo, foram testados dois métodos diferentes para a estimação dos parâmetros: a tradicional abordagem em dois passos (Two-Step DNS), e a estimação com o Filtro de Kalman Estendido, que permite que os parâmetros sejam estimados recursivamente, a cada vez que uma nova informação é adicionada ao sistema. Em relação aos modelos testados, os resultados encontrados mostram-se pouco conclusivos, apontando uma melhora apenas marginal nas estimativas dentro e fora da amostra quando as variáveis exógenas são incluídas. Já a utilização do Filtro de Kalman Estendido mostrou resultados mais consistentes quando comparados ao método em dois passos para praticamente todos os horizontes de tempo estudados.