20 resultados para Modelos lineares generalizados


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Este trabalho analisa as propriedades de uma nova medida de má especificação de modelos de apreçamento, que está relacionada com o tamanho do ajuste multiplicativo necessário para que o modelo seja corretamente especificado. A partir disso, caracterizamos o parâmetro que minimiza a medida a partir de um programa dual, de solução mais simples. Os estimadores naturais para esse parâmetro pertencem à classe de Generalized Empirical Likelihood. Derivamos as propriedades assintóticas deste estimador sob a hipótese de má especificação. A metodologia é empregada para estudar como se comportam em amostras finitas as estimativas de aversão relativa ao risco em uma economia de desastres quando os estimadores estão associados a nossa medida de má especificação. Nas simulações vemos que em média a aversão ao risco é superestimada, mesmo quando ocorre um número significativo de desastres.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose mo deIs to analyze animal growlh data wilh lhe aim of eslimating and predicting quanlities of Liological and economical interest such as the maturing rate and asymptotic weight. lt is also studied lhe effect of environmenlal facLors of relevant influence in the growlh processo The models considered in this paper are based on an extension and specialization of the dynamic hierarchical model (Gamerman " Migon, 1993) lo a non-Iinear growlh curve sdLillg, where some of the growth curve parameters are considered cxchangeable among lhe unils. The inferencc for thcse models are appruximale conjugale analysis Lascd on Taylor series cxpallsiulIs aliei linear Bayes procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O presente estudo demonstra que o mercado brasileiro cambial de forward reflete adequadamente a visão dos economistas – obtida junto a pesquisas de mercado realizadas periodicamente pelo Banco Central do Brasil – quando se modela o prêmio pelo risco cambial através de modelos auto-regressivos condicionais generalizados de heteroscedasticidade na Média (GARCH-M).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O objetivo deste trabalho foi mostrar modelagens alternativas à tradicional maneira de se apurar o risco de mercado para ativos financeiros brasileiros. Procurou-se cobrir o máximo possível de fatores de risco existentes no Brasil; para tanto utilizamos as principais proxies para instrumentos de Renda Fixa. Em momentos de volatilidade, o gerenciamento de risco de mercado é bastante criticado por trabalhar dentro de modelagens fundamentadas na distribuição normal. Aqui reside a maior contribuição do VaR e também a maior crítica a ele. Adicionado a isso, temos um mercado caracterizado pela extrema iliquidez no mercado secundário até mesmo em certos tipos de títulos públicos federais. O primeiro passo foi fazer um levantamento da produção acadêmica sobre o tema, seja no Brasil ou no mundo. Para a nossa surpresa, pouco, no nosso país, tem se falado em distribuições estáveis aplicadas ao mercado financeiro, seja em gerenciamento de risco, precificação de opções ou administração de carteiras. Após essa etapa, passamos a seleção das variáveis a serem utilizadas buscando cobrir uma grande parte dos ativos financeiros brasileiros. Assim, deveríamos identificar a presença ou não da condição de normalidade para, aí sim, realizarmos as modelagens das medidas de risco, VaR e ES, para os ativos escolhidos, As condições teóricas e práticas estavam criadas: demanda de mercado (crítica ao método gausiano bastante difundido), ampla cobertura de ativos (apesar do eventual questionamento da liquidez), experiência acadêmica e conhecimento internacional (por meio de detalhado e criterioso estudo da produção sobre o tema nos principais meios). Analisou-se, desta forma, quatro principais abordagens para o cálculo de medidas de risco sendo elas coerentes (ES) ou não (VaR). É importante mencionar que se trata de um trabalho que poderá servir de insumo inicial para trabalhos mais grandiosos, por exemplo, aqueles que incorporarem vários ativos dentro de uma carteira de riscos lineares ou, até mesmo, para ativos que apresentem risco não-direcionais.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O trabalho tem como objetivo verificar a existência e a relevância dos Efeitos Calendário em indicadores industriais. São explorados modelos univariados lineares para o indicador mensal da produção industrial brasileira e alguns de seus componentes. Inicialmente é realizada uma análise dentro da amostra valendo-se de modelos estruturais de espaço-estado e do algoritmo de seleção Autometrics, a qual aponta efeito significante da maioria das variáveis relacionadas ao calendário. Em seguida, através do procedimento de Diebold-Mariano (1995) e do Model Confidence Set, proposto por Hansen, Lunde e Nason (2011), são realizadas comparações de previsões de modelos derivados do Autometrics com um dispositivo simples de Dupla Diferença para um horizonte de até 24 meses à frente. Em geral, os modelos Autometrics que consideram as variáveis de calendário se mostram superiores nas projeções de 1 a 2 meses adiante e superam o modelo simples em todos os horizontes. Quando se agrega os componentes de categoria de uso para formar o índice industrial total, há evidências de ganhos nas projeções de prazo mais curto.