33 resultados para Implied volatility smile
Resumo:
Esse estudo estende a metodologia de Fama e French (1988) para testar a hipótese derivada da Teoria dos Estoques de que o convenience yield dos estoques diminui a uma taxa decrescente com o aumento de estoque. Como descrito por Samuelson (1965), a Teoria implica que as variações nos preços à vista (spot) e dos futuros (ou dos contratos a termo) serão similares quando os estoques estão altos, mas os preços futuros variarão menos que os preços à vista quando os estoques estão baixos. Isso ocorre porque os choques de oferta e demanda podem ser absorvidos por ajustes no estoque quando este está alto, afetando de maneira similar os preços à vista e futuros. Por outro lado, quando os estoques estão baixos, toda a absorção dos choques de demanda ou oferta recai sobre o preço à vista, uma vez que os agentes econômicos têm pouca condição de reagir à quantidade demandada ou ofertada no curto prazo.
Resumo:
The goal of this paper is to present a comprehensive emprical analysis of the return and conditional variance of four Brazilian …nancial series using models of the ARCH class. Selected models are then compared regarding forecasting accuracy and goodness-of-…t statistics. To help understanding the empirical results, a self-contained theoretical discussion of ARCH models is also presented in such a way that it is useful for the applied researcher. Empirical results show that although all series share ARCH and are leptokurtic relative to the Normal, the return on the US$ has clearly regime switching and no asymmetry for the variance, the return on COCOA has no asymmetry, while the returns on the CBOND and TELEBRAS have clear signs of asymmetry favoring the leverage e¤ect. Regarding forecasting, the best model overall was the EGARCH(1; 1) in its Gaussian version. Regarding goodness-of-…t statistics, the SWARCH model did well, followed closely by the Student-t GARCH(1; 1)
Resumo:
The aim of this article is to assess the role of real effective exchange rate volatility on long-run economic growth for a set of 82 advanced and emerging economies using a panel data set ranging from 1970 to 2009. With an accurate measure for exchange rate volatility, the results for the two-step system GMM panel growth models show that a more (less) volatile RER has significant negative (positive) impact on economic growth and the results are robust for different model specifications. In addition to that, exchange rate stability seems to be more important to foster long-run economic growth than exchange rate misalignment
Resumo:
Este trabalho propõe um instrumento capaz de absorver choques no par BRL/USD, garantindo ao seu detentor a possibilidade de realizar a conversão entre essas moedas a uma taxa observada recentemente. O Volatility Triggered Range Forward assemelha-se a um instrumento forward comum, cujo preço de entrega não é conhecido inicialmente, mas definido no momento em que um nível de volatilidade pré-determinado for atingido na cotação das moedas ao longo da vida do instrumento. Seu cronograma de ajustes pode ser definido para um número qualquer de períodos. Seu apreçamento e controle de riscos é baseado em uma árvore trinomial ponderada entre dois possíveis regimes de volatilidade. Esses regimes são determinados após um estudo na série BRL/USD no período entre 2003 e 2009, basedo em um modelo Switching Autoregressive Conditional Heteroskedasticity (SWARCH).
Resumo:
Using intraday data for the most actively traded stocks on the São Paulo Stock Market (BOVESPA) index, this study considers two recently developed models from the literature on the estimation and prediction of realized volatility: the Heterogeneous Autoregressive Model of Realized Volatility (HAR-RV), developed by Corsi (2009), and the Mixed Data Sampling model (MIDAS-RV), developed by Ghysels et al. (2004). Using measurements to compare in-sample and out-of-sample forecasts, better results were obtained with the MIDAS-RV model for in-sample forecasts. For out-of-sample forecasts, however, there was no statistically signi cant di¤erence between the models. We also found evidence that the use of realized volatility induces distributions of standardized returns that are closer to normal
Resumo:
Aiming at empirical findings, this work focuses on applying the HEAVY model for daily volatility with financial data from the Brazilian market. Quite similar to GARCH, this model seeks to harness high frequency data in order to achieve its objectives. Four variations of it were then implemented and their fit compared to GARCH equivalents, using metrics present in the literature. Results suggest that, in such a market, HEAVY does seem to specify daily volatility better, but not necessarily produces better predictions for it, what is, normally, the ultimate goal. The dataset used in this work consists of intraday trades of U.S. Dollar and Ibovespa future contracts from BM&FBovespa.
Resumo:
This paper develops a methodology for testing the term structure of volatility forecasts derived from stochastic volatility models, and implements it to analyze models of S&P500 index volatility. U sing measurements of the ability of volatility models to hedge and value term structure dependent option positions, we fmd that hedging tests support the Black-Scholes delta and gamma hedges, but not the simple vega hedge when there is no model of the term structure of volatility. With various models, it is difficult to improve on a simple gamma hedge assuming constant volatility. Ofthe volatility models, the GARCH components estimate of term structure is preferred. Valuation tests indicate that all the models contain term structure information not incorporated in market prices.
Resumo:
In this article we use factor models to describe a certain class of covariance structure for financiaI time series models. More specifical1y, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. We build on previous work by allowing the factor loadings, in the factor mo deI structure, to have a time-varying structure and to capture changes in asset weights over time motivated by applications with multi pIe time series of daily exchange rates. We explore and discuss potential extensions to the models exposed here in the prediction area. This discussion leads to open issues on real time implementation and natural model comparisons.
Resumo:
The past decade has wítenessed a series of (well accepted and defined) financial crises periods in the world economy. Most of these events aI,"e country specific and eventually spreaded out across neighbor countries, with the concept of vicinity extrapolating the geographic maps and entering the contagion maps. Unfortunately, what contagion represents and how to measure it are still unanswered questions. In this article we measure the transmission of shocks by cross-market correlation\ coefficients following Forbes and Rigobon's (2000) notion of shift-contagion,. Our main contribution relies upon the use of traditional factor model techniques combined with stochastic volatility mo deIs to study the dependence among Latin American stock price indexes and the North American indexo More specifically, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. From a theoretical perspective, we improve currently available methodology by allowing the factor loadings, in the factor model structure, to have a time-varying structure and to capture changes in the series' weights over time. By doing this, we believe that changes and interventions experienced by those five countries are well accommodated by our models which learns and adapts reasonably fast to those economic and idiosyncratic shocks. We empirically show that the time varying covariance structure can be modeled by one or two common factors and that some sort of contagion is present in most of the series' covariances during periods of economical instability, or crisis. Open issues on real time implementation and natural model comparisons are thoroughly discussed.
Resumo:
In a general equilibrium model. we show that the value of the equilibrium real exchange rate is affected by its own volatility. Risk averse exporters. that make their exporting decision before observing the realization of the real exchange rate. choose to export less the more volatile is the real exchange rate. Therefore the trude balance and the variance of the real exchange rate are negatively related. An increase in the volatility of the real exchange rate for instance deteriorates the trade balance and to restore equilibrium a real exchange rate depreciation has to take place. In the empirical part of the paper we use the traditional (unconditional) standard deviation of RER changes as our measure of RER volatility.We describe the behavior of the RER volatility for Brazil,Argentina and Mexico.Monthly data for the three countries are used. and also daily data for Bruzil. Interesting patterns of volatility could be associated to the nature of the several stabilization plans adopted in those countries and to changes in the exchange rate regimes .
Resumo:
Asset allocation decisions and value at risk calculations rely strongly on volatility estimates. Volatility measures such as rolling window, EWMA, GARCH and stochastic volatility are used in practice. GARCH and EWMA type models that incorporate the dynamic structure of volatility and are capable of forecasting future behavior of risk should perform better than constant, rolling window volatility models. For the same asset the model that is the ‘best’ according to some criterion can change from period to period. We use the reality check test∗ to verify if one model out-performs others over a class of re-sampled time-series data. The test is based on re-sampling the data using stationary bootstrapping. For each re-sample we check the ‘best’ model according to two criteria and analyze the distribution of the performance statistics. We compare constant volatility, EWMA and GARCH models using a quadratic utility function and a risk management measurement as comparison criteria. No model consistently out-performs the benchmark.
Resumo:
No Brasil, o mercado de crédito corporativo ainda é sub-aproveitado. A maioria dos participantes não exploram e não operam no mercado secundário, especialmente no caso de debêntures. Apesar disso, há inúmeras ferramentas que poderiam ajudar os participantes do mercado a analisar o risco de crédito e encorajá-los a operar esses riscos no mercado secundário. Essa dissertação introduz um modelo livre de arbitragem que extrai a Perda Esperada Neutra ao Risco Implícita nos preços de mercado. É uma forma reduzida do modelo proposto por Duffie and Singleton (1999) e modela a estrutura a termo das taxas de juros através de uma Função Constante por Partes. Através do modelo, foi possível analisar a Curva de Perda Esperada Neutra ao Risco Implícita através dos diferentes instrumentos de emissores corporativos brasileiros, utilizando Títulos de Dívida, Swaps de Crédito e Debêntures. Foi possível comparar as diferentes curvas e decidir, em cada caso analisado, qual a melhor alternativa para se tomar o risco de crédito da empresa, via Títulos de Dívida, Debêntures ou Swaps de Crédito.
Resumo:
Este trabalho estuda se existe impacto na volatilidade dos mercados de ações em torno das eleições nacionais nos países da OCDE e nos países em Desenvolvimento. Ao mesmo tempo, pretende, através de variáveis explicativas, descobrir os fatores responsáveis por esse impacto. Foi descoberta evidência que o impacto das eleições na volatilidade dos mercados de ações é maior nos países em Desenvolvimento. Enquanto as eleições antecipadas, a mudança na orientação política e o tamanho da população foram os factores que explicaram o aumento da volatilidade nos países da OCDE, o nível democrático, número de partidos da coligação governamental e a idade dos mercados foram os factores explicativos para os países em Desenvolvimento.