19 resultados para High Frequency Trading
Resumo:
Nos últimos anos, o mercado brasileiro de opções apresentou um forte crescimento, principalmente com o aparecimento da figura dos High Frequency Traders (HFT) em busca de oportunidades de arbitragem, de modo que a escolha adequada do modelo de estimação de volatilidade pode tornar-se um diferencial competitivo entre esses participantes. Este trabalho apresenta as vantagens da adoção do modelo de volatilidade estocástica de Heston (1993) na construção de superfície de volatilidade para o mercado brasileiro de opções de dólar, bem como a facilidade e o ganho computacional da utilização da técnica da Transformada Rápida de Fourier na resolução das equações diferenciais do modelo. Além disso, a partir da calibração dos parâmetros do modelo com os dados de mercado, consegue-se trazer a propriedade de não-arbitragem para a superfície de volatilidade. Os resultados, portanto, são positivos e motivam estudos futuros sobre o tema.
Resumo:
Using intraday data for the most actively traded stocks on the São Paulo Stock Market (BOVESPA) index, this study considers two recently developed models from the literature on the estimation and prediction of realized volatility: the Heterogeneous Autoregressive Model of Realized Volatility (HAR-RV), developed by Corsi (2009), and the Mixed Data Sampling model (MIDAS-RV), developed by Ghysels et al. (2004). Using measurements to compare in-sample and out-of-sample forecasts, better results were obtained with the MIDAS-RV model for in-sample forecasts. For out-of-sample forecasts, however, there was no statistically signi cant di¤erence between the models. We also found evidence that the use of realized volatility induces distributions of standardized returns that are closer to normal
Resumo:
This paper proposes a two-step procedure to back out the conditional alpha of a given stock using high-frequency data. We rst estimate the realized factor loadings of the stocks, and then retrieve their conditional alphas by estimating the conditional expectation of their risk-adjusted returns. We start with the underlying continuous-time stochastic process that governs the dynamics of every stock price and then derive the conditions under which we may consistently estimate the daily factor loadings and the resulting conditional alphas. We also contribute empiri-cally to the conditional CAPM literature by examining the main drivers of the conditional alphas of the S&P 100 index constituents from January 2001 to December 2008. In addition, to con rm whether these conditional alphas indeed relate to pricing errors, we assess the performance of both cross-sectional and time-series momentum strategies based on the conditional alpha estimates. The ndings are very promising in that these strategies not only seem to perform pretty well both in absolute and relative terms, but also exhibit virtually no systematic exposure to the usual risk factors (namely, market, size, value and momentum portfolios).
Resumo:
The goal of this paper is twofold. First, using five of the most actively traded stocks in the Brazilian financial market, this paper shows that the normality assumption commonly used in the risk management area to describe the distributions of returns standardized by volatilities is not compatible with volatilities estimated by EWMA or GARCH models. In sharp contrast, when the information contained in high frequency data is used to construct the realized volatilies measures, we attain the normality of the standardized returns, giving promise of improvements in Value at Risk statistics. We also describe the distributions of volatilities of the Brazilian stocks, showing that the distributions of volatilities are nearly lognormal. Second, we estimate a simple linear model to the log of realized volatilities that differs from the ones in other studies. The main difference is that we do not find evidence of long memory. The estimated model is compared with commonly used alternatives in an out-of-sample experiment.