17 resultados para Stochastic optimization model
Resumo:
This paper builds a simple, empirically-verifiable rational expectations model for term structure of nominal interest rates analysis. It solves an stochastic growth model with investment costs and sticky inflation, susceptible to the intervention of the monetary authority following a policy rule. The model predicts several patterns of the term structure which are in accordance to observed empirical facts: (i) pro-cyclical pattern of the level of nominal interest rates; (ii) countercyclical pattern of the term spread; (iii) pro-cyclical pattern of the curvature of the yield curve; (iv) lower predictability of the slope of the middle of the term structure; and (v) negative correlation of changes in real rates and expected inflation at short horizons.
Resumo:
We consider risk-averse convex stochastic programs expressed in terms of extended polyhedral risk measures. We derive computable con dence intervals on the optimal value of such stochastic programs using the Robust Stochastic Approximation and the Stochastic Mirror Descent (SMD) algorithms. When the objective functions are uniformly convex, we also propose a multistep extension of the Stochastic Mirror Descent algorithm and obtain con dence intervals on both the optimal values and optimal solutions. Numerical simulations show that our con dence intervals are much less conservative and are quicker to compute than previously obtained con dence intervals for SMD and that the multistep Stochastic Mirror Descent algorithm can obtain a good approximate solution much quicker than its nonmultistep counterpart. Our con dence intervals are also more reliable than asymptotic con dence intervals when the sample size is not much larger than the problem size.
Resumo:
We discuss a general approach to building non-asymptotic confidence bounds for stochastic optimization problems. Our principal contribution is the observation that a Sample Average Approximation of a problem supplies upper and lower bounds for the optimal value of the problem which are essentially better than the quality of the corresponding optimal solutions. At the same time, such bounds are more reliable than “standard” confidence bounds obtained through the asymptotic approach. We also discuss bounding the optimal value of MinMax Stochastic Optimization and stochastically constrained problems. We conclude with a small simulation study illustrating the numerical behavior of the proposed bounds.
Resumo:
This paper investigates an intertemporal optimization model in order to analyze the current account of the G-7 countries, measured as the present value of the future changes in net output. The study compares observed and forecasted series, generated by the model, using Campbell & Shiller’s (1987) methodology. In the estimation process, the countries are considered separately (with OLS technique) as well as jointly (SURE approach), to capture contemporaneous correlations of the shocks in net output. The paper also proposes a note on Granger causality and its implications to the optimal current account. The empirical results are sensitive to the technique adopted in the estimation process and suggest a rejection of the model in the G-7 countries, except for the USA and Japan, according to some papers presented in the literature.
Resumo:
This thesis is composed of three essays referent to the subjects of macroeconometrics and Önance. In each essay, which corresponds to one chapter, the objective is to investigate and analyze advanced econometric techniques, applied to relevant macroeconomic questions, such as the capital mobility hypothesis and the sustainability of public debt. A Önance topic regarding portfolio risk management is also investigated, through an econometric technique used to evaluate Value-at-Risk models. The Örst chapter investigates an intertemporal optimization model to analyze the current account. Based on Campbell & Shillerís (1987) approach, a Wald test is conducted to analyze a set of restrictions imposed to a VAR used to forecast the current account. The estimation is based on three di§erent procedures: OLS, SUR and the two-way error decomposition of Fuller & Battese (1974), due to the presence of global shocks. A note on Granger causality is also provided, which is shown to be a necessary condition to perform the Wald test with serious implications to the validation of the model. An empirical exercise for the G-7 countries is presented, and the results substantially change with the di§erent estimation techniques. A small Monte Carlo simulation is also presented to investigate the size and power of the Wald test based on the considered estimators. The second chapter presents a study about Öscal sustainability based on a quantile autoregression (QAR) model. A novel methodology to separate periods of nonstationarity from stationary ones is proposed, which allows one to identify trajectories of public debt that are not compatible with Öscal sustainability. Moreover, such trajectories are used to construct a debt ceiling, that is, the largest value of public debt that does not jeopardize long-run Öscal sustainability. An out-of-sample forecast of such a ceiling is also constructed, and can be used by policy makers interested in keeping the public debt on a sustainable path. An empirical exercise by using Brazilian data is conducted to show the applicability of the methodology. In the third chapter, an alternative backtest to evaluate the performance of Value-at-Risk (VaR) models is proposed. The econometric methodology allows one to directly test the overall performance of a VaR model, as well as identify periods of an increased risk exposure, which seems to be a novelty in the literature. Quantile regressions provide an appropriate environment to investigate VaR models, since they can naturally be viewed as a conditional quantile function of a given return series. An empirical exercise is conducted for daily S&P500 series, and a Monte Carlo simulation is also presented, revealing that the proposed test might exhibit more power in comparison to other backtests.
Resumo:
Mensalmente são publicados relatórios pelo Departamento de Agricultura dos Estados Unidos (USDA) onde são divulgados dados de condições das safras, oferta e demanda globais, nível dos estoques, que servem como referência para todos os participantes do mercado de commodities agrícolas. Esse mercado apresenta uma volatilidade acentuada no período de divulgação dos relatórios. Um modelo de volatilidade estocástica com saltos é utilizado para a dinâmica de preços de milho e de soja. Não existe um modelo ‘ideal’ para tal fim, cada um dos existentes têm suas vantagens e desvantagens. O modelo escolhido foi o de Oztukel e Wilmott (1998), que é um modelo de volatilidade estocástica empírica, incrementado com saltos determinísticos. Empiricamente foi demonstrado que um modelo de volatilidade estocástica pode ser bem ajustado ao mercado de commodities, e o processo de jump-diffusion pode representar bem os saltos que o mercado apresenta durante a divulgação dos relatórios. As opções de commodities agrícolas que são negociadas em bolsa são do tipo americanas, então alguns métodos disponíveis poderiam ser utilizados para precificar opções seguindo a dinâmica do modelo proposto. Dado que o modelo escolhido é um modelo multi-fatores, então o método apropriado para a precificação é o proposto por Longstaff e Schwartz (2001) chamado de Monte Carlo por mínimos quadrados (LSM). As opções precificadas pelo modelo são utilizadas em uma estratégia de hedge de uma posição física de milho e de soja, e a eficiência dessa estratégia é comparada com estratégias utilizando-se instrumentos disponíveis no mercado.
Resumo:
li consumption is log-Normal and is decomposed into a linear deterministic trend and a stationary cycle, a surprising result in business-cycle research is that the welfare gains of eliminating uncertainty are relatively small. A possible problem with such calculations is the dichotomy between the trend and the cyclical components of consumption. In this paper, we abandon this dichotomy in two ways. First, we decompose consumption into a deterministic trend, a stochastic trend, and a stationary cyclical component, calculating the welfare gains of cycle smoothing. Calculations are carried forward only after a careful discussion of the limitations of macroeconomic policy. Second, still under the stochastic-trend model, we incorporate a variable slope for consumption depending negatively on the overall volatility in the economy. Results are obtained for a variety of preference parameterizations, parameter values, and different macroeconomic-policy goals. They show that, once the dichotomy in the decomposition in consumption is abandoned, the welfare gains of cycle smoothing may be substantial, especially due to the volatility effect.
Resumo:
On using McKenzie’s taxonomy of optimal accumulation in the longrun, we report a “uniform turnpike” theorem of the third kind in a model original to Robinson, Solow and Srinivasan (RSS), and further studied by Stiglitz. Our results are presented in the undiscounted, discrete-time setting emphasized in the recent work of Khan-Mitra, and they rely on the importance of strictly concave felicity functions, or alternatively, on the value of a “marginal rate of transformation”, ξσ, from one period to the next not being unity. Our results, despite their specificity, contribute to the methodology of intertemporal optimization theory, as developed in economics by Ramsey, von Neumann and their followers.
Resumo:
This Paper Tackles the Problem of Aggregate Tfp Measurement Using Stochastic Frontier Analysis (Sfa). Data From Penn World Table 6.1 are Used to Estimate a World Production Frontier For a Sample of 75 Countries Over a Long Period (1950-2000) Taking Advantage of the Model Offered By Battese and Coelli (1992). We Also Apply the Decomposition of Tfp Suggested By Bauer (1990) and Kumbhakar (2000) to a Smaller Sample of 36 Countries Over the Period 1970-2000 in Order to Evaluate the Effects of Changes in Efficiency (Technical and Allocative), Scale Effects and Technical Change. This Allows Us to Analyze the Role of Productivity and Its Components in Economic Growth of Developed and Developing Nations in Addition to the Importance of Factor Accumulation. Although not Much Explored in the Study of Economic Growth, Frontier Techniques Seem to Be of Particular Interest For That Purpose Since the Separation of Efficiency Effects and Technical Change Has a Direct Interpretation in Terms of the Catch-Up Debate. The Estimated Technical Efficiency Scores Reveal the Efficiency of Nations in the Production of Non Tradable Goods Since the Gdp Series Used is Ppp-Adjusted. We Also Provide a Second Set of Efficiency Scores Corrected in Order to Reveal Efficiency in the Production of Tradable Goods and Rank Them. When Compared to the Rankings of Productivity Indexes Offered By Non-Frontier Studies of Hall and Jones (1996) and Islam (1995) Our Ranking Shows a Somewhat More Intuitive Order of Countries. Rankings of the Technical Change and Scale Effects Components of Tfp Change are Also Very Intuitive. We Also Show That Productivity is Responsible For Virtually All the Differences of Performance Between Developed and Developing Countries in Terms of Rates of Growth of Income Per Worker. More Important, We Find That Changes in Allocative Efficiency Play a Crucial Role in Explaining Differences in the Productivity of Developed and Developing Nations, Even Larger Than the One Played By the Technology Gap
Resumo:
Economias emergentes sofrem importantes restrições de crédito quando comparadas com economias desenvolvidas, entretanto, modelos estocásticos de equilíbrio geral (DSGE) desenhados para economias emergentes ainda precisam avançar nessa discussão. Nós propomos um modelo DSGE que pretende representar uma economia emergente com setor bancário baseado em Gerali et al. (2010). Nossa contribuição é considerar uma parcela da renda esperada como colateral para empréstimos das famílias. Nós estimamos o modelo proposto para o Brasil utilizando estimação Bayesiana e encontramos que economias que sofrem restrição de colateral por parte das famílias tendem a sentir o impacto de choques monetários mais rapidamente devido a exposição do setor bancário a mudanças no salário esperado.
Resumo:
This paper develops a methodology for testing the term structure of volatility forecasts derived from stochastic volatility models, and implements it to analyze models of S&P500 index volatility. U sing measurements of the ability of volatility models to hedge and value term structure dependent option positions, we fmd that hedging tests support the Black-Scholes delta and gamma hedges, but not the simple vega hedge when there is no model of the term structure of volatility. With various models, it is difficult to improve on a simple gamma hedge assuming constant volatility. Ofthe volatility models, the GARCH components estimate of term structure is preferred. Valuation tests indicate that all the models contain term structure information not incorporated in market prices.
Resumo:
In this article we use factor models to describe a certain class of covariance structure for financiaI time series models. More specifical1y, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. We build on previous work by allowing the factor loadings, in the factor mo deI structure, to have a time-varying structure and to capture changes in asset weights over time motivated by applications with multi pIe time series of daily exchange rates. We explore and discuss potential extensions to the models exposed here in the prediction area. This discussion leads to open issues on real time implementation and natural model comparisons.
Resumo:
The past decade has wítenessed a series of (well accepted and defined) financial crises periods in the world economy. Most of these events aI,"e country specific and eventually spreaded out across neighbor countries, with the concept of vicinity extrapolating the geographic maps and entering the contagion maps. Unfortunately, what contagion represents and how to measure it are still unanswered questions. In this article we measure the transmission of shocks by cross-market correlation\ coefficients following Forbes and Rigobon's (2000) notion of shift-contagion,. Our main contribution relies upon the use of traditional factor model techniques combined with stochastic volatility mo deIs to study the dependence among Latin American stock price indexes and the North American indexo More specifically, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. From a theoretical perspective, we improve currently available methodology by allowing the factor loadings, in the factor model structure, to have a time-varying structure and to capture changes in the series' weights over time. By doing this, we believe that changes and interventions experienced by those five countries are well accommodated by our models which learns and adapts reasonably fast to those economic and idiosyncratic shocks. We empirically show that the time varying covariance structure can be modeled by one or two common factors and that some sort of contagion is present in most of the series' covariances during periods of economical instability, or crisis. Open issues on real time implementation and natural model comparisons are thoroughly discussed.
Resumo:
We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent.
Resumo:
We consider multistage stochastic linear optimization problems combining joint dynamic probabilistic constraints with hard constraints. We develop a method for projecting decision rules onto hard constraints of wait-and-see type. We establish the relation between the original (in nite dimensional) problem and approximating problems working with projections from di erent subclasses of decision policies. Considering the subclass of linear decision rules and a generalized linear model for the underlying stochastic process with noises that are Gaussian or truncated Gaussian, we show that the value and gradient of the objective and constraint functions of the approximating problems can be computed analytically.