3 resultados para Cálculo-Problemas
em Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul
Resumo:
O objetivo deste trabalho consiste no desenvolvimento de alguns avanços, teóricos e numéricos, no método LTSN visando implementar a primeira versão de um código computacional, para resolver a equação de transporte utilizando formulação LTSN na forma de multigrupos em geometria plana. Os avanços para o método LTSN estão fundamentados na solução iterativa para o sistema de equações que constituem as condições de contorno, um novo método para a busca do valor de keff baseado no método da bissecção. O desenvolvimento desta metodologia permitiu realizar o calculo muito rápido com altas ordens de quadratura e com esforço computacional muito reduzido. Juntos os avanços matemáticos e numéricos, implementados nesta primeira versão de um código fortran, tal como nos códigos já conhecidos permite solucionar a equação de transporte na forma de multigrupos, tanto para o cálculo direto como para o adjunto, com fontes arbitrárias. Este código utiliza de recursos computacionais da linguagem FORTRAN e as bibliotecas LAPACK, para a otimização de seus algoritmos, facilitando o desenvolvimento futuro. A validação deste trabalho foi feita utilizando dois problemas: um relativo ao fluxo angular e escalar, tanto para o fluxo direto como para o adjunto, cuja importância está relacionada com busca de convergência, relação de reciprocidade e comprovação da solução adjunta, e; um problema de criticalidade, para comprovar a eficácia do algoritmo de busca iterativa de keff e espessura crítica. Com este trabalho se abrem muitas possibilidades tanto teóricas como numéricas a investigar com o método LTSN.
Resumo:
Este trabalho visa o uso da função de transferência, a qual relaciona distribuição de temperatura e fluxo de calor, na comparação no domínio freqüência, entre o modelo de difusão usual (parabólico) e um modelo ondulatório (hiperbólico) que inclue o efeito de propagação do calor não instantâneo, sendo avaliados os casos de meio semi-infinito e finito. Para o caso de meio semi-infinito, são determinadas as expressões para as características de amplitude e de fase, considerando tanto a abordagem parabólica quanto hiperbólica. É observada a relação entre estas duas abordagens, mostrando que a abordagem parabólica é uma caso particular da abordagem hiperbólica, podendo ser obtida através de um processo de limite envolvendo o tempo de relaxação r . Para o caso de meio finito, são determinadas as expressões para as caracteríısticas de amplitude de ambas as faces da placa unidimensional, considerando tanto a abordagem parabólica quanto hiperbólica. Estas expressões são transformadas para a forma adimensional quando então são deduzidas as expressões correspondentes das características de amplitude. Mais uma vez, todos os resultados para o caso parabólico podem ser determinados a partir dos resultados do caso hiperbólico, através de um processo de limite envolvendo o tempo de relaxação r São apresentados resultados numéricos referentes às características de amplitude, onde é apontada a existência de uma freqüência limite, acima da qual a diferença entre os dois modelos, do tipo parabólico ou hiperbólico, aumenta rapidamente. Também é apresentada uma forma alternativa de cálculo da distribuição de temperatura transiente que faz uso da função de transferência do sistema.
Resumo:
Este trabalho visa a disponibilização de um ambiente de alto desempenho, do tipo cluster de computadores, com alta exatidão, obtida através da utilização da biblioteca C–XSC. A alta exatidão na solução de um problema é obtida através da realização de cálculos intermediários sem arredondamentos como se fossem em precisão infinita. Ao final do cálculo, o resultado deve ser representado na máquina. O resultado exato real e o resultado representado diferem apenas por um único arredondamento. Esses cálculos em alta exatidão devem estar disponíveis para algumas operações aritméticas básicas, em especial as que possibilitam a realização de somatório e de produto escalar. Com isso, deseja-se utilizar o alto desempenho através de um ambiente de cluster onde se tem vários nodos executando tarefas ou cálculos. A comunicação será realizada por troca de mensagens usando a biblioteca de comunicação MPI. Para se obter a alta exatidão neste tipo de ambiente, extensões ou adaptações nos programas paralelos tiveram que ser disponibilizadas para garantir que a qualidade do resultado final realizado em um cluster, onde vários nodos colaboram para o resultado final do cálculo, mantivesse a mesma qualidade do resultado que é obtido em uma única máquina (ou nodo) de um ambiente de alta exatidão. Para validar o ambiente proposto foram realizados testes básicos abordando o cálculo do produto escalar, a multiplicação entre matrizes, a implementação de solvers intervalares para matrizes densas e bandas e a implementação de alguns métodos numéricos para a resolução de sistemas de equações lineares com a característica da alta exatidão. Destes testes foram realizadas análises e comparações a respeito do desempenho e da exatidão obtidos com e sem o uso da biblioteca C–XSC, tanto em programas seqüenciais como em programas paralelos. Com a conseqüente implementação dessas rotinas e métodos será aberto um vasto campo de pesquisa no que se refere ao estudo de aplicações reais de grande porte que necessitem durante a sua resolução (ou em parte dela) da realização de operações aritméticas com uma exatidão melhor do que a obtida usualmente pelas ferramentas computacionais tradicionais.