Uso da função de transferência em problemas de condução do calor com a lei de Fourier modificada


Autoria(s): Chiwiacowsky, Leonardo Dagnino
Contribuinte(s)

Ruiz Claeyssen, Julio Cesar

Data(s)

06/06/2007

2002

Resumo

Este trabalho visa o uso da função de transferência, a qual relaciona distribuição de temperatura e fluxo de calor, na comparação no domínio freqüência, entre o modelo de difusão usual (parabólico) e um modelo ondulatório (hiperbólico) que inclue o efeito de propagação do calor não instantâneo, sendo avaliados os casos de meio semi-infinito e finito. Para o caso de meio semi-infinito, são determinadas as expressões para as características de amplitude e de fase, considerando tanto a abordagem parabólica quanto hiperbólica. É observada a relação entre estas duas abordagens, mostrando que a abordagem parabólica é uma caso particular da abordagem hiperbólica, podendo ser obtida através de um processo de limite envolvendo o tempo de relaxação r . Para o caso de meio finito, são determinadas as expressões para as caracteríısticas de amplitude de ambas as faces da placa unidimensional, considerando tanto a abordagem parabólica quanto hiperbólica. Estas expressões são transformadas para a forma adimensional quando então são deduzidas as expressões correspondentes das características de amplitude. Mais uma vez, todos os resultados para o caso parabólico podem ser determinados a partir dos resultados do caso hiperbólico, através de um processo de limite envolvendo o tempo de relaxação r São apresentados resultados numéricos referentes às características de amplitude, onde é apontada a existência de uma freqüência limite, acima da qual a diferença entre os dois modelos, do tipo parabólico ou hiperbólico, aumenta rapidamente. Também é apresentada uma forma alternativa de cálculo da distribuição de temperatura transiente que faz uso da função de transferência do sistema.

Formato

application/pdf

Identificador

http://hdl.handle.net/10183/3247

000334677

Idioma(s)

por

Direitos

Open Access

Palavras-Chave #Transferencia de calor #Fenomenos de transporte #Modelos matemáticos
Tipo

Dissertação