46 resultados para Equação do movimento
Resumo:
Propomos uma idealização da situação em que uma macromolécula é ionizada em um solvente. Neste modelo a área da superfície da molécula é suposta ser grande com respeito a seu diâmetro. A molécula é considerada como um dielétrico com uma distribuição de cargas em sua superfície. Utilizando as condições de transmissão, a distribuição de Boltzmann no solvente e resultados recentes sobre espaços de Sobolev no contexto de espaços métricos, bem como de integração sobre superfícies irregulares, o problema é formulado em forma variacional. Resultados clássicos do cálculo de variações permitem a resolução analítica do problema.
Resumo:
Neste trabalho, desenvolvemos uma metodologia semi-analítica para solução de problemas de condução de calor bidimensional, não-estacionária em meios multicompostos. Esta metodologia combina os métodos nodal, com parâmetros concentrados, e a técnica da transformada de Laplace. Inicialmente, aplicamos o método nodal. Nele, a equação diferencial parcial que descreve o problema é integrada, transversalmente, em relação a uma das variáveis espaciais. Em seguida, é utilizado o método de parâmetros concentrados, onde a distribuição de temperatura nos contornos superior e inferior é substituída pelo seu valor médio. Os problemas diferenciais unidimensionais resultantes são então resolvidos com o uso da técnica da transformada de Laplace, cuja inversão é avaliada numericamente. O método proposto é usado na solução do problema de condução de calor, em paredes de edificações. A implementação computacional é feita, utilizando-se a linguagem FORTRAN e os resultados numéricos obtidos são comparados com os disponíveis na literatura.
Resumo:
Este estudo de caráter descritivo teve como objetivo investigar a qualidade e cinesfera dos movimentos dos membros superiores de jogadores de basquete em cadeira de rodas da Associação Rio-grandense de Paralíticos e Amputados. A revisão de literatura destacou a caracterização da pessoa portadora de deficiência motora e o basquete em cadeira de rodas, assim como o significado, a qualidade e cinesfera do movimento humano. Não tendo sido encontrada literatura sobre pesquisas realizadas a respeito desse assunto quanto ao usuário da cadeira de rodas, a coleta dos dados ocorreu através de entrevistas, filmagens e fichas de observação, o que possibilitou a análise e interpretação da qualidade e cinesfera dos indivíduos da amostra. Com os resultados obtidos, foi possível verificar que, em todos os movimentos locomotores, manipulativos, estabilizantes e expressivos, os indivíduos apresentaram uma qualidade própria dentro dos fatores do movimento (peso, tempo, espaço e fluência); foram também identificadas combinações entre estes fatores (caracterizando ações básicas de esforço). Quanto à cinesfera dos movimentos dos membros superiores, os indivíduos observados, portadores de deficiência motora, demonstraram explorar diferentes direções espaciais (dimensionais, diametrais e diagonais), predominando a direção espacial diametral, denominada de movimento das ações práticas.
Resumo:
A tarefa de estimação de movimento, utilizada na compressão de vídeo digital, é normalmente realizada em hardware por processador dedicado, uma vez que demanda expressiva capacidade computacional. Este trabalho propõe e desenvolve uma arquitetura de hardware para realizar o cálculo dos vetores de movimento no contexto de compressão de vídeo digital. Essa arquitetura para estimação de movimento é composta pelos blocos: interface de entrada e saída (E/S), matriz de processamento com 64 elementos de processamento, unidade de comparação e unidade de controle. A arquitetura foi descrita em linguagem VHDL de maneira que o número de bits utilizados para representação da luminância dos pontos é configurável. A partir desta descrição, foi gerado um protótipo para dados representados em 4 bits utilizando um kit de desenvolvimento baseado no dispositivo FPGA XC2S150 da Xilinx. Para validação do algoritmo e da arquitetura implementada, além da simulação, foi desenvolvido um software para plataforma PC capaz de exercitar as funcionalidades do protótipo. O PC é utilizado como dispositivo controlador de E/S para esta validação, na qual uma implementação do algoritmo em software e outra em linguagem de descrição de hardware são comparadas. A máxima freqüência de trabalho do protótipo, estimada por simulação da arquitetura mapeada no FPGA XC2S150, é de 33 MHz. A esta freqüência o núcleo da arquitetura paralela de 64 elementos de processamento realiza cerca de 2,1 GOps (bilhões de operações inteiras por segundo). Esta arquitetura de hardware calcula os vetores de movimento para vídeo no formato 640x480 pontos à taxa de 107,32 quadros por segundo, ou um quadro a cada 9,3 ms. A arquitetura implementada para luminânica em 4 bits ocupa 16 pinos de E/S, 71,1% dos blocos lógicos do FPGA e 83,3% dos blocos de memória disponíveis no dispositivo XC2S150.
Resumo:
Estudamos o problema de Dirichlet para a equação das superfícies mínimas em domínios limitados do plano. Provamos a existência e unicidade de gráficos mínimos sobre domínios limitados e não necessariamente convexos, com valores no bordo satisfazendo uma condição que denominamos condição da declividade limitada generalizada a qual, usando cilindros no lugar de planos, generaliza a condição clássica da declividade limitada. Com este resultado, dado um domínio limitado e suave qualquer do plano, conseguimos obter cotas explícitas para a norma C2 de dados no bordo deste domínio que garantem a existência de solução ao correspondente problema de Dirichlet.
Resumo:
Neste trabalho se propõe um avanço para a Técnica Transformada Integral Generalizada, GITT. O problema transformado, usualmente resolvido por subrotinas numéricas, é aqui abordado analiticamente fazendo-se uso da Transformada de Laplace. Para exemplificar o uso associado destas duas transformadas integrais, resolvem-se dois problemas. Um de concentração de poluentes na atmosfera e outro de convecção forçada com escoamento laminar, entre placas planas paralelas, com desenvolvimento simultâneo dos perfis térmico e hidrodinâmico. O primeiro é difusivo, transiente e com coeficientes variáveis. Sua solução é obtida de forma totalmente analítica. Além de mostrar o uso da técnica, este exemplo apesar de ter coeficientes variáveis, é resolvido com o auxílio de um problema de autovalores associado com coeficientes constantes. No segundo, obtém-se a solução da Equação da Energia analiticamente. Já a Equação da Conservação do Momentum é linearizada e resolvida de forma iterativa. A solução de cada iteração é obtida analiticamente.
Resumo:
As aplicações da mecânica vibratória vêm crescendo significativamente na análise de sistemas de suspensões e estruturas de veículos, dentre outras. Desta forma, o presente trabalho desenvolve técnicas para a simulação e o controle de uma suspensão de automóvel utilizando modelos dinâmicos com um, dois e três graus de liberdade. Na obtenção das equações do movimento para o sistema massa-mola-amortecedor, o modelo matemático utilizado tem como base a equação de Lagrange e a segunda lei de Newton, com condições iniciais apropriadas. A solução numérica destas equações é obtida através do método de Runge-Kutta de 4ª ordem, utilizando o software MATLAB. Para controlar as vibrações do sistema utilizou-se três métodos diferentes de controle: clássico, LQR e alocação de pólos. O sistema assim obtido satisfaz as condições de estabilidade e de desempenho e é factível para aplicações práticas, pois os resultados obtidos comparam adequadamente com dados analíticos, numéricos ou experimentais encontrados na literatura, indicando que técnicas de controle como o clássico podem ser simples e eficientes.
Resumo:
O objetivo deste trabalho é obter uma nova solução analítica para a equação de advecção-difusão. Para tanto, considera-se um problema bidimensional difusivo-advectivo estacionário com coeficiente de difusão turbulenta vertical variável que modela a dispersão de poluentes na atmosfera. São utilizados três coeficientes difusivos válidos na camada limite convectiva e que dependem da altura, da distância da fonte e do perfil de velocidade. A abordagem utilizada para a resolução do problema é a técnica da Transformada Integral Generalizada, na qual a equação transformada do problema difusivo-advectivo é resolvida pela técnica da Transformada de Laplace com inversão analítica. Nenhuma aproximação é feita durante a derivação da solução, sendo assim, esta é exata exceto pelo erro de truncamento. O modelo ´e avaliado em condições moderadamente instáveis usando o experimento de Copenhagen. Apresentam-se os resultados numéricos e estatísticos, comparando os resultados obtidos com dados experimentais e com os resultados da literatura. O modelo proposto mostrou-se satisfatório em relação aos dados dos experimentos difusivos considerados.
Resumo:
Neste trabalho, um problema de transferência de calor da dinâmica de gases rarefeitos, causado pela diferença de temperaturas nas superfícies de um canal, é abordado. O problema é formulado através dos modelos cinéticos BGK, S e Gross-Jackson da equação linearizada de Boltzmann e resolvido, de forma unificada, pelo método analítico de ordenadas discretas (método ADO). Resultados numéricos para as perturbações de densidade e temperatura e também para o fluxo de calor são apresentados e comparados, mostrando que não se pode dizer que algum dos três modelos seja uma melhor aproximação da solução aos resultados da equação linearizada de Boltzmann.
Resumo:
O presente trabalho teve como objetivo geral investigar a utilização do movimento corporal no ensino de violino para adolescentes iniciantes. Por meio de questionários, foi realizado um levantamento com 13 professores de violino do Centro de Educação Profissional – Escola de Música de Brasília, para verificar quais os problemas técnicos mais freqüentes nas aulas de violino de adolescentes iniciantes e para investigar como as práticas pedagógicas, relativas aos movimentos corporais, podem auxiliar no trabalho com as deficiências técnicas encontradas. O referencial teórico para a leitura dos dados encontrados é o conceito de movimento corporal na execução dos instrumentos de corda, proposto por Rolland (1974). Nesta revisão encontram-se também outros autores que abordam a relação entre movimento corporal e execução instrumental, como Flesch (1924), Galamian (1962), Szende & Nemessuri, (1971) e Havas (1961). Ao longo do trabalho são tecidas considerações sobre a influência de fatores cognitivos, físicos e cronológicos na aprendizagem de habilidades motoras. Também é apresentada uma categorização dos movimentos implicados na execução violinística: movimentos bilaterais, unilaterais, rotatórios, balísticos e seqüenciais. Os resultados apontam para práticas pedagógicas distantes das reflexões levantadas nesta pesquisa. Verificou-se que grande parte das instruções fornecidas pelos professores baseia-se na experiência pessoal, evidenciando a ausência de conhecimento sobre orientações anatômicas e fisiológicas relacionadas à execução instrumental. Outra constatação desta investigação é a desinformação sobre material específico para a iniciação de adolescentes e jovens no violino. Considerando os dados obtidos, são apresentadas sugestões de exercícios que enfatizam a mobilidade corporal e são feitas algumas ponderações no sentido de fomentar a reflexão sobre a atividade pedagógica para iniciantes.
Resumo:
O objetivo deste trabalho consiste em estender o método LTSN à solução do problema adjunto de transporte de nêutrons. A solução adjunta é interpretada fisicamente como uma função importância que designa a capacidade de contribuição de cada cela do espaço de fase para um funcional resposta. A derivação desta interpretação, através do princípio variacional, está sucintamente apresentada. Surgida da necessidade de generalização da fonte adjunta, também propõe-se uma nova formulação LTSN capaz de resolver problemas de transporte, tanto direto quanto adjunto, com fonte arbitrária, para elevada ordem de quadratura em geometria de placa. Esta nova formulção inspira-se na propriedade de invariância de projeção dos meios isotrópicos mas também é válida para os meios anisotrópicos. Todos os resultados apresentados pelas simulações numéricas de problemas adjuntos são calculados pela nova formulação LTSN e são comparados ou com a definição de função importância ou pelas relações de reciprocidade ou pelo código ANISN.
Resumo:
Vários métodos analíticos, numéricos e híbridos podem ser utilizados na solução de problemas de difusão e difusão-advecção. O objetivo deste trabalho é apresentar dois métodos analíticos para obtenção de soluções em forma fechada da equação advectivo-difusiva em coordenadas cartesianas que descreve problemas de dispersão de poluentes na água e na atmosfera. Um deles é baseado em regras de manipulação de exponenciais de operadores diferenciais, e o outro consiste na aplicação de simetrias de Lie admitidas por uma equação diferencial parcial linear. Desenvolvem-se regras para manipulação de exponenciais de operadores diferenciais de segunda ordem com coeficientes constantes e para operadores advectivo-difusivos. Nos casos em que essas regras não podem ser aplicadas utiliza-se uma formulação para a obtenção de simetrias de Lie, admitidas por uma equação diferencial, via mapeamento. Define-se um operador diferencial com a propriedade de transformar soluções analíticas de uma dada equação diferencial em novas soluções analíticas da mesma equação. Nas aplicações referentes à dispersão de poluentes na água, resolve-se a equação advectivo-difusiva bidimensional com coeficientes variáveis, realizando uma mudança de variáveis de modo a reescrevê-la em termos do potencial velocidade e da função corrente correspondentes ao respectivo escoamento potencial, estendendo a solução para domínios de contornos arbitrários Na aplicação referente ao problema de dispersão de poluentes na atmosfera, realiza-se uma mudança de variáveis de modo a obter uma equação diferencial parcial com coeficientes constantes na qual se possam aplicar as regras de manipulação de exponenciais de operadores diferenciais. Os resultados numéricos obtidos são comparados com dados disponíveis na literatura. Diversas vantagens da aplicação das formulações apresentadas podem ser citadas, a saber, o aumento da velocidade de processamento, permitindo a obtenção de solução em tempo real; a redução da quantidade de memória requerida na realização de operações necessárias para a obtenção da solução analítica; a possibilidade de dispensar a discretização do domínio em algumas situações.
Resumo:
Neste trabalho apresenta-se uma solução analítica para a dispersão vertical turbulenta em uma Camada Limite Convectiva e em uma Camada Limite Estável. A equação analisada considera a difusão com velocidades finitas, o que representa o transporte turbulento fisicamente correto. Considerando o caráter não-local, adicionam-se na equação que representa uma fonte área instantânea, termos como: o tempo de relaxação, a assimetria, a escala de tempo Lagrangeana e a velocidade turbulenta vertical. A solução é obtida utilizando-se a técnica da Transformada de Laplace. Os parâmetros que encerram a turbulência são derivados da teoria de difusão estatística de Taylor combinada com a teoria de similaridade. Foram utilizados coeficientes de difusão especáficos para cada uma das camadas. A transformada inversa é obtida através do esquema numérico de quadratura Gaussiana. São apresentadas várias simulações para diferentes alturas de fonte área e obtém-se o valor da concentração para alturas próximas ao solo e próximas ao topo da Camada Limite Planetária. A inserção do termo de contra-gradiente na equação resultou em uma pequena influência na concentração de poluentes, observada de forma mais expressiva na Camada Limite Convectiva.
Resumo:
Neste trabalho é desenvolvida uma solução semi-analítica para a Equação de Langevin assintótica (Equação de Deslocamento Aleatório) aplicada à dispersão de poluentes na Camada Limite Convectiva (CLC). A solução tem como ponto de partida uma equação diferencial de primeira ordem para o deslocamento aleatório, sobre a qual é aplicado o Método Iterativo de Picard. O novo modelo é parametrizado por um coeficiente de difusão obtido a partir da Teoria de Difusão Estatística de Taylor e de um modelo para o espectro de turbulência, assumindo a supersposição linear dos efeitos de turbulência térmica e mecânica. A avaliação do modelo é realizada através da comparação com dados de concentração medidos durante o experimento de dispersão de Copenhagen e com resultados obtidos por outros quatro modelos: modelo de partículas estocástico para velocidade aleatória (Modelo de Langevin), solução analítica da equação difusão-advecção, solução numérica da equação difusão-advecção e modelo Gaussiano. Uma análise estatística revela que o modelo proposto simula satisfatoriamente os valores de concentração observados e apresenta boa concordância com os resultados dos outros modelos de dispersão. Além disso, a solução através do Método Iterativo de Picard pode apresentar algumas vantagem em relação ao método clássico de solução.
Resumo:
Este trabalho estuda o movimento de renovação do ensino da matemática conhecido como o "movimento da matemática moderna",surgido no Brasil no inicio dos anos 60. Através do estudo da ação, do discurso e do pensamento dos protagonistas em relação com o contexto histórico em que foram produzidos e com o movimento da matemática moderna de âmbito internacional, procura explicar o alcance e as limitações desse movimento, em sua dinâmica e elaboração pedagógica. A abordagem adotada considera tanto os aspectos do movimento que o identificam com um processo mais amplo e de âmbito mundial de crescente valorização do ensino das ciências naturais e da matemática no período que sucedeu à Segunda Guerra Mundial, no qual o movimento da matemática se insere, como as especificidades do movimento relacionadas com a ação dos protagonistas e a realidade do pais. A análise do movimento como ocorreu no Brasil é feita fundamentalmente a partir da leitura de documentos produzidos durante o periodo de sua existência e de depoimentos obtidos através de entrevistas semi-estruturadas com participantes do movimento. O contexto no qual é situada essa análise inclui uma descrição breve da realidade politica, econômica e social do pais, com ênfase na realidade educacional - em particular, do ensino secundário e nos debates pedagógicos produzidos no período As modificações nas relações entre ciência e produção material no âmbito da economia capitalista são tratadas como elemento decisivo para a explicação da combinação entre esforços de governos e de educadores para a renovação e melhoria do ensino da matemática, desde os anos 50, em vários paises. O trabalho apresenta, em suas conclusões, conexões que contribuem para a clarificação de como o movimento foi marcado pelo contexto histórico em que surgiu e se desenvolveu. São enfatizadas as relações entre: o crescimento e a modernização da economia brasileira e o otimismo acerca das consequências sociais da melhoria do ensino e do desenvolvimento da ciência no pais; a expansão do ensino secundário desde os anos 30, acelerada nos anos 60, e as preocupações dos educadores acerca da eficiência e da deselitização desse ensino. O trabalho aponta, também, as conexães entre o movimento da matemática moderna e os debates sobre ensino de matemática realizados no pais antes e depois do movimento, situando-o como momento de um processo iniciado nos anos 50, anos 80, de iniciativa dos professores de matemática em torno da reflexão e renovação de sua própria prática.