28 resultados para user-defined function (UDF)

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a three-dimensional (3D) computational fluid dynamic simulation of a biomimetic robot fish. Fluent and user-defined function (UDF) is used to define the movement of the robot fish and the Dynamic Mesh is used to mimic the fish swimming in water. Hydrodynamic analysis is done in this paper too. The aim of this study is to get comparative data about hydrodynamic properties of those guidelines to improve the design, remote control and flexibility of the underwater robot fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prediction of more than four ears in a cup drawing process can be successfully achieved by considering r-value and stress directionalities. Yld2004-18p based on associated flow rule and Yld2000-2D based on non-associated flow rule are the examples. The former, however, is more costly in terms of computational efficiency than the latter. In this work, an anisotropic constitutive model based on non-associated flow rule which combines two different functions, Hill (1948) and Yld2000-2d, is implemented to a user defined material model. The accuracy of the anisotropic directionalities (yield stresses and plastic strain ratios) is evaluated. Simulation of a mini-die cup drawing with a body stock alloy predicted eight ears, in good agreement with the experimental results. The use of Hill (1948) model for the yield function and Yld2000-2d for plastic potential under the framework of non-associated flow rule led to accurate prediction of up to eight ears at the lower computational cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effect of anisotropy in compression is studied on hot rolling of AZ31 magnesium alloy with a three-dimensional constitutive model based on the quadratic Hill48 yield criterion and nonassociated flow rule (non-AFR). The constitutive model is characterized by compressive tests of AZ31 billets since plastic deformations of materials are mostly caused by compression during rolling processes. The characterized plasticity model is implemented into ABAQUS/Explicit as a user-defined material subroutine (VUMAT) based on semi-implicit backward Euler's method. The subroutine is employed to simulate square-bar rolling processes. The simulation results are compared with rolled specimens and those predicted by the von Mises and the Hill48 yield function under AFR. Moreover, strip rolling is also simulated for AZ31 with the Hill48 yield function under non-AFR. The strip rolling simulation demonstrates that the lateral spread generated by the non-AFR model is in good agreement with experimental data. These comparisons between simulation and experiments validate that the proposed Hill48 yield function under non-AFR provides satisfactory description of plastic deformation behavior in hot rolling for AZ31 alloys in case that the anisotropic parameters in the Hill48 yield function and the non-associated flow rule are calibrated by the compressive experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an application of Microsoft Robotics Studio (MSRS) in which a team of six four wheel drive, ground based robots explore and map simulated terrain. The user has the ability to modify the terrain and assign destination objectives to the team while the simulation is running. The terrain is initially generated using a gray scale image, in which the intensity of each pixel in the image gives an altitude datum. The robots start with no knowledge of their surroundings, and map the terrain as they attempt to reach user-defined target objectives. The mapping process simulates the use of common sensory hardware to determine datum points, including provision for field of view, detection range, and measurement accuracy. If traversal of a mapped area is indicated by the users’ targeting commands, path planning heuristics developed for MSRS by the author in earlier work are used to determine an efficient series of waypoints to reach the objective. Mutability of terrain is also explored- the user is able to modify the terrain without stopping the simulation. This forces the robots to adapt to changing environmental conditions, and permits analysis of the robustness of mapping algorithms used when faced with a changing world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Australian automotive component company plans to assemble and deliver seats to a car manufacturer on a "just-in-time" basis at its new plant. The research objective was to model seat assembly operations and apply Toyota goal chasing algorithm and user defined algorithm to balance workload among all the assembly workstations and areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we are focusing on the investigation of the effects of gradient patterns on mechanical behavior of functionally-graded carbon nanotube-reinforced nanocomposites and considering typical beams made of such nanocomposites. Both analytic and finite element-based numerical models were developed. Analytic model was developed based on the first-order shear deformation and Timoshenko beam theories meanwhile finite element models were developed using Abaqus in conjunction with user-defined subroutines for defining the continuously gradient material properties for different gradient patterns. Position-dependent elastic modulus equations for four continuously graded patterns were studied. A nongraded pattern was used for benchmarking with the same geometry and total carbon nanotube (CNT) contents. For validation and verification, the results on both deflection and stress of these nanocomposite beams were analyzed, which clearly showed high influence from gradient patterns on these mechanical behaviors of such beams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The significant effects of the building industry on the natural environment are well documented and improving the environmental performance of buildings is an on-going challenge. This is particularly the case for projects with restrictive budgets and timelines and because many existing environmental assessment tools are designed to be used too late in the design process. The use of tools during the early design stages may assist in achieving greater improvements in a building’s environmental performance. However, user-friendly tools with the ability to comprehensively compare environmental information between various building assemblies and materials, which can be easily adopted during the early design stages of a project, are not readily available. This paper presents the progress to date in developing a tool which supports building designers in identifying and selecting preferred building assemblies with the aim of minimising a building’s life cycle energy demand. The tool is based on comprehensive energy performance data for a broad range of building assemblies across all Australian climate zones. Allowing for adjustments to a set of pre-defined and user-defined assemblies the designer is able to see how assemblies perform in relation to each other. This provides valuable information to support decision-making relating to minimising the life cycle energy demand of buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes how biologically inspired vector fields can be used to partially automate the manual and time-consuming process of specifying hair directions. This approach replicates the consequence of stretching of skin from natural hair development process, in contrast to replicating the appearance of hair. The direction of each hair on the surface of an arbitrary 3D model is determined by interpolating the solution vector field that satisfies a set of user-defined constraints describing the stretching of skin. Results found that the generated hair directional pattern closely resembles that found naturally. Further investigation revealed that the presence of naturally occurring hair types and the varying distribution of hair directions induced by the calculated vector field enhanced the realism of hair coats generated using this approach. Aside from hair or fur, this approach can also be applied to hair-like masses such as grass, feathers, or scales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous attempts in addressing Access Point (AP) association at overlapping zone of IEEE 802.11 networks have shown some issues. They work passively and estimate load from different network metrics such as frame delay, packet loss, number of users etc. that may not always true. Further the user behaviour is selfish i.e. illegitimate user consume high network resources. This adversely affect existing or new users which in turn motivates them to change locations. To alleviate these issues, we propose the use of a Software Defined Networking (SDN) enabled client side (wireless end user) solution. In this paper, we start by proposing a dynamic AP selection algorithm/framework in wireless user device. The device receive network resource related statistics from SDN Controller and guide the client device to associate itself with the best selected AP. We justify that the use of SDN discourage users to act selfishly. Further, a mathematical modelling of the proposed scheme is derived using Fuzzy membership function and the simulation is carried out. Results obtained from simulation necessitates to implement SDN enabled client side methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main problems with Artificial Neural Networks (ANNs) is that their results are not intuitively clear. For example, commonly used hidden neurons with sigmoid activation function can approximate any continuous function, including linear functions, but the coefficients (weights) of this approximation are rather meaningless. To address this problem, current paper presents a novel kind of a neural network that uses transfer functions of various complexities in contrast to mono-transfer functions used in sigmoid and hyperbolic tangent networks. The presence of transfer functions of various complexities in a Mixed Transfer Functions Artificial Neural Network (MTFANN) allow easy conversion of the full model into user-friendly equation format (similar to that of linear regression) without any pruning or simplification of the model. At the same time, MTFANN maintains similar generalization ability to mono-transfer function networks in a global optimization context. The performance and knowledge extraction of MTFANN were evaluated on a realistic simulation of the Puma 560 robot arm and compared to sigmoid, hyperbolic tangent, linear and sinusoidal networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an assessment of system effectiveness in automatic requirements refinement by comparing results obtained from experts and novices with those achieved by the system. As the investigated system was a combination of a tightly inter-connected methods and a tool, the evaluation framework melded together a number of distinct methodological approaches structured into three empirical studies, which aimed at the construction of a case problem domain, calibrating the system using this defined domain elements and finally using the calibrated system to assess its effectiveness. In consequence, it was concluded that the evaluated methods and tools were effective in supporting requirements refinement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the big problems with Artificial Neural Networks (ANN) is that their results are not intuitively clear. For example, if we use the traditional neurons, with a sigmoid activation function, we can approximate any function, including linear functions, but the coefficients (weights) in this approximation will be rather meaningless. To resolve this problem, this paper presents a novel kind of ANN with different transfer functions mixed together. The aim of such a network is to i) obtain a better generalization than current networks ii) to obtain knowledge from the networks without a sophisticated knowledge extraction algorithm iii) to increase the understanding and acceptance of ANNs. Transfer Complexity Ratio is defined to make a sense of the weights associated with the network. The paper begins with a review of the knowledge extraction from ANNs and then presents a Mixed Transfer Function Artificial Neural Network (MTFANN). A MTFANN contains different transfer functions mixed together rather than mono-transfer functions. This mixed presence has helped to obtain high level knowledge and similar generalization comparatively to monotransfer function nets in a global optimization context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil erosion in developing countries is a widespread problem causing considerable economic damage. It still remains an intractable problem in many countries. Available research findings on costs of soil erosion indicate them to be high. Soil erosion continues to be a problem due to the difficulties of estimating the economic damages and attendant difficulties in developing effective control policies. This paper considers soil to be a nonrenewable resource and estimates the marginal user costs using a yield damage function. Results indicate user costs to be low for individual farms. The low user costs are due to some of the assumptions made with respect to a number of parameters such as prices of tea, costs, and technological developments. The results also indicate that marginal user costs are sensitive to prices, soil depth and soil loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Personal identification of individuals is becoming increasingly adopted in society today. Due to the large number of electronic systems that require human identification, faster and more secure identification systems are pursued. Biometrics is based upon the physical characteristics of individuals; of these the fingerprint is the most common as used within law enforcement. Fingerprint-based systems have been introduced into the society but have not been well received due to relatively high rejection rates and false acceptance rates. This limited acceptance of fingerprint identification systems requires new techniques to be investigated to improve this identification method and the acceptance of the technology within society. Electronic fingerprint identification provides a method of identifying an individual within seconds quickly and easily. The fingerprint must be captured instantly to allow the system to identify the individual without any technical user interaction to simplify system operation. The performance of the entire system relies heavily on the quality of the original fingerprint image that is captured digitally. A single fingerprint scan for verification makes it easier for users accessing the system as it replaces the need to remember passwords or authorisation codes. The identification system comprises of several components to perform this function, which includes a fingerprint sensor, processor, feature extraction and verification algorithms. A compact texture feature extraction method will be implemented within an embedded microprocessor-based system for security, performance and cost effective production over currently available commercial fingerprint identification systems. To perform these functions various software packages are available for developing programs for windows-based operating systems but must not constrain to a graphical user interface alone. MATLAB was the software package chosen for this thesis due to its strong mathematical library, data analysis and image analysis libraries and capability. MATLAB enables the complete fingerprint identification system to be developed and implemented within a PC environment and also to be exported at a later date directly to an embedded processing environment. The nucleus of the fingerprint identification system is the feature extraction approach presented in this thesis that uses global texture information unlike traditional local information in minutiae-based identification methods. Commercial solid-state sensors such as the type selected for use in this thesis have a limited contact area with the fingertip and therefore only sample a limited portion of the fingerprint. This limits the number of minutiae that can be extracted from the fingerprint and as such limits the number of common singular points between two impressions of the same fingerprint. The application of texture feature extraction will be tested using variety of fingerprint images to determine the most appropriate format for use within the embedded system. This thesis has focused on designing a fingerprint-based identification system that is highly expandable using the MATLAB environment. The main components that are defined within this thesis are the hardware design, image capture, image processing and feature extraction methods. Selection of the final system components for this electronic fingerprint identification system was determined by using specific criteria to yield the highest performance from an embedded processing environment. These platforms are very cost effective and will allow fingerprint-based identification technology to be implemented in more commercial products that can benefit from the security and simplicity of a fingerprint identification system.