141 resultados para titanium aluminides

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A two-stage process in the formation of TiAl3 was found in the accumulative roll bonding (ARB) Ti/Al multilayers. The distribution of layer spacing did not become broad enough to lose the main features of the double exothermal behaviour. A modified model based on thin films was set up to describe the kinetic characteristics of the formation of TiAl3 in ARB samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocatalytic oxidation (PCO) process is an effective way to deal with organic pollutants in wastewater which could be difficult to be degraded by conventional biological treatment methods. Normally the TiO2 powder in nanometre size range was directly used as photocatalyst for dye degradation in wastewater. However the titanium dioxide powder was arduous to be recovered from the solution after treatment. In this application, a new form of TiO2 (i.e. pillar pellets ranging from 2.5 to 5.3 mm long and with a diameter of 3.7 mm) was used and investigated for photocatalytic degradation of textile dye effluent. A test system was built with a flat plate reactor (FPR) and UV light source (blacklight and solar simulator as light source respectively) for investigating the effectiveness of the new form of TiO2. It was found that the photocatalytic process under this configuration could efficiently remove colours from textile dyeing effluent. Comparing with the TiO2 powder, the pellet was very easy to recovered from the treated solution and can be reused in multiple times without the significant change on the photocatalytic property. The results also showed that to achieve the same photocatalytic performance, the FPR area by pellets was about 91% smaller than required by TiO2 powder. At least TiO2 pellet could be used as an alternative form of photocatalyst in applications for textile effluent treatment process, also other wastewater treatment processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium foams fabricated by a new powder metallurgical process have bimodal pore distribution architecture (i.e., macropores and micropores), mimicking natural bone. The mechanical properties of the titanium foam with low relative densities of approximately 0.20-0.30 are close to those of human cancellous bone. Also, mechanical properties of the titanium foams with high relative densities of approximately 0.50-0.65 are close to those of human cortical bone. Furthermore, titanium foams exhibit good ability to form a bonelike apatite layer throughout the foams after pretreatment with a simple thermochemical process and then immersion in a simulated body fluid. The present study illustrates the feasibility of using the titanium foams as implant materials in bone tissue engineering applications, highlighting their excellent biomechanical properties and bioactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple sol–gel method was developed for hydroxyapatite/titania (HA/TiO2) coatings on non-toxic titanium–zirconium (TiZr) alloy for biomedical applications. The HA/TiO2-coated TiZr alloy displayed excellent bioactivity when soaked in a simulated body fluid (SBF) for an appropriate period. Differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy-energy dispersive spectrometry were used to characterize the phase transformations and the surface structures and to assess the in vitro tests. The HA/TiO2 layers were spin-coated on the surface of TiZr alloy at a speed of 3000 rpm for 15 s, followed by a heat treatment at 600 °C for 20 min in an argon atmosphere sequentially. The TiO2 layer exhibited a cracked surface and an anatase structure and the HA layer displayed a uniform dense structure. Both the TiO2 and HA layers were 25 μm thick, and the total thickness of the HA/TiO2 coatings was 50 μm. The TiZr alloy after the above HA/TiO2 coatings displayed excellent bone-like apatite-forming ability when soaked in SBF and can be anticipated to be a promising load-bearing implant material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly porous titanium and titanium alloys with an open cell structure are promising implant materials due to their low elastic modulus, excellent bioactivity, biocompatibility and the ability for bone regeneration. However, the mechanical strength of the porous titanium decreases dramatically with increasing porosity, which is a prerequisite for the ingrowth of new bone tissues and vascularization. In the present study, porous titanium with porosity gradients, i.e. solid core with highly porous outer shell was successfully fabricated using a powder metallurgy approach. Satisfactory mechanical properties derived from the solid core and osseointegration capacity derived from the outer shell can be achieved simultaneously through the design of the porosity gradients of the porous titanium. The outer shell of porous titanium exhibited a porous architecture very close to
that of natural bone, i.e. a porosity of 70% and pore size distribution in the range of 200 - 500 μm. The peak stress and the elastic modulus of the porous titanium with a porosity gradient (an overall porosity 63%) under compression were approximately 152 MPa and 4 GPa, respectively. These
properties are very close to those of natural bone. For comparison, porous titanium with a uniform porosity of 63% was also prepared and haracterised in the present study. The peak stress and the elastic modulus were 109 MPa and 4 GPa, respectively. The topography of the porous titanium
affected the mechanical properties significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various types of titanium alloys with high strength and low elastic modulus and, at the same time, vanadium and aluminium free have been developed as surgical biomaterials in recent years. Moreover, porous metals are promising hard tissue implants in orthopaedic and dentistry, where they mimic the porous structure and the low elastic modulus of natural bone. In the present study, new biocompatible Ti-based alloy foams with approximate relative densities of 0.4, in which Sn and Nb were added as alloying metals, were synthesised through powder metallurgy method.
The new alloys were prepared by mechanical alloying and subsequently sintered at high temperature using a vacuum furnace. The characteristics and the processability of the ball milled powders and the new porous titanium-based alloys were characterised by X-ray diffraction, optical
microscopy and scanning electron microscopy .The mechanical properties of the new titanium alloys were examined by Vickers microhardness measurements and compression testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti-26 at.%Nb (hereafter Ti-26Nb) alloy foams were fabricated by space-holder sintering process. The porous structures of the foams were characterized by scanning electron microscopy (SEM). The mechanical properties of the Ti-26Nb foam samples were investigated using compressive test. Results indicate that mechanical properties of Ti-26Nb foam samples are influenced by foam porosity. The plateau stresses and elastic moduli of the foams under compression decrease with the increase of their porosities. The plateau stresses and elastic moduli are measured to be from 10~200 MPa and 0.4~5.0 GPa for the Ti-26Nb foam samples with porosities ranged from 80~50 %, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple sol–gel method was successfully developed for a hydroxyapatite (HA)/TiO2 double layer deposition on a pure titanium substrate. Phase formation, surface morphology, and interfacial microstructure were investigated by differential scanning calorimetry analysis (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The TiO2 layer was coated by a spin coating method at a speed of 1500 rpm for 15 s, followed by a heat treatment at 560 °C for 20 min. The HA film was subsequently spin coated on the outer surface at the same speed and then heat-treated at difference temperatures. Results indicated that the HA phase began to crystallize after a heat treatment at 580 °C; and the crystallinity increased obviously at a temperature of 780 °C. The HA film showed a porous structure and a thickness of 5–7 μm after the heat treatment at 780 °C. SEM observations revealed no delamination and crack at the interfaces of HA/TiO2 and TiO2/Ti. The HA film with a porous structure is expected to be more susceptible to the natural remodeling processes when it is implanted in a living body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, pure titanium (Ti) plates were firstly treated to form various types of oxide layers on the surface and then were immersed into simulated body fluid (SBF) to evaluate the apatite-forming ability. The surface morphology and roughness of the different oxide layers were measured by atomic force microscopy (AFM), and the surface energies were determined based on the Owens–Wendt (OW) methods. It was found that Ti samples after alkali heat (AH) treatment achieved the best apatite formation after soaking in SBF for three weeks, compared with those without treatment, thermal or H2O2 oxidation. Furthermore, contact angle measurement revealed that the oxide layer on the alkali heat treated Ti samples possessed the highest surface energy. The results indicate that the apatite-inducing ability of a titanium oxide layer links to its surface energy. Apatite nucleation is easier on a surface with a higher surface energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using Titanium (Ti) foam as an implant material is a new approach for biomedical applications and it is important to understand the mechanical behaviors of this new foam material. In the present study, the bending of the Ti foam has been simulated and compared against recently published data [1]. FE Analysis has been performed by Abaqus software. Stiffness and Yield strength of foams between 50% (cortical bone) to 80% (cancellous bone) porosity range were considered. This study showed that crushable foam material model in Abaqus, which has developed primarily for Aluminum (Al) foam alloys, is also valid for Ti Foam before any crack or damage occurs in the sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigated the use of titanium dioxide sol-gel coatings to photo-catalyse red wine stains on wool fabrics. Coatings were produced by the hydrolysis and condensation of titanium butoxide (Ti(OC4H9)4) on the surface of wool fabrics after pad application. Coatings were partially converted to the anatase form of titanium dioxide by prolonged immersion in boiling water. The coating presence was confirmed using scanning electron microscopy, UVspectrophotometry and atomic force microscopy. Coated samples were measured for photo-catalytic activity by degrading red wine stains from the surface of the coated fabric. The level of photocatalysis was determined for each of the coating systems after 168 hours. Red wine stains were photo-catalysed and level of staining was reduced from the UV exposed surface of the coated wool fabric.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current orthopaedic biomaterials research mainly focuses on designing implants that could induce controlled, guided and rapid healing. In the present study, the surface morphologies of titanium (Ti) and niobium (Nb) metals were tailored to form nanoporous, nanoplate and nanofibre-like structures through adjustment of the temperature in the alkali-heat treatment. The in vitro bioactivity of these structures was then evaluated by soaking the treated samples in simulated body fluid (SBF). It was found that the morphology of the modified surface significantly influenced the apatite-inducing ability. The Ti surface with a nanofibre-like structure showed better apatite-inducing ability than the nanoporous or nanoplate surface structures. A thick dense apatite layer formed on the Ti surface with nanofibre-like structure after 1 week of soaking in SBF. It is expected that the nanofibre-like surface could achieve good apatite formation in vivo and subsequently enhance osteoblast cell adhesion and bone formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Titanium (Ti) is widely proven to enhance bone contact and growth on its surface. It is expected that bone defects could benefit from Ti to promote healing and to increase strength of the implanted area.

Purpose: The present study aimed at comparing the potential of porous Ti sponge rods with synthetic hydroxyapatite (HA) for the healing of bone defects in a canine model.

Material and Methods: Six mongrel dogs were submitted to three trephined osteotomies of 6.0 × 4.0 mm in one humerus and after 2 months another three osteotomies were performed in the contralateral humerus. A total of 36 defects were randomly filled either with Ti foam, particulate HA, or coagulum (control). The six animals were killed 4 months after the first surgery for histological and histometrical analysis.

Results: The Ti-foam surface was frequently found in intimate contact with new bone especially at the defect walls. Control sites showed higher amounts of newly formed bone at 2 months – Ti (p = 0.000) and HA (p = 0.009) – and 4 months when compared with Ti (p = 0.001). Differently from HA, the Ti foam was densely distributed across the defect area which rendered less space for bone growth in the latter's sites. The use of Ti foams or HA resulted in similar amounts of bone formation in both time intervals. Nevertheless, the presence of a Ti-foam rod preserved defect's marginal bone height as compared with control groups. Also, the Ti-foam group showed a more mature bone pattern at 4 months than HA sites.

Conclusion: The Ti foam exhibited good biocompatibility, and its application resulted in improved maintenance of bone height compared with control sites. The Ti foam in a rod design exhibited bone ingrowth properties suitable for further exploration in other experimental situations.