76 resultados para thermo- responsive formulation

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable thermo-responsive hydrogel nanofibres have been prepared by electrospinning of commercial poly(N-isopropylacrylamide) (PNIPAM) in the presence of a polyhedral oligomeric silsesquioxane (POSS) possessing eight epoxide groups and of an organic-base catalyst, followed by a heat curing treatment. The nanofibres showed excellent hydrogel characteristics with fast swelling and de-swelling responses triggered by temperature changes. They were also morphologically robust as their physical integrity was preserved upon repeated hydration/dehydration cycles and exposure to solvents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Islands-in-the-sea nanofibres are a very interesting system: one polymer (islands) is distributed in fibrillar domains within a second polymer (sea). This fibre geometry is often used in microfiber technologies to obtain very fine fibers, by removing the “sea” polymer. This geometry also allows to combine two polymers with very different properties. In this work this geometry is introduced applied to electrospun hydrogel nanofibers, in a novel fashion, and as a way to improve and stabilize the hydrogel nanofibers. Thermo-responsive islands-in-the-sea nanofibers are here produced by electrospinning solutions of a hydrogel-forming thermo-responsive polymer (crosslinked poly(N-isopropylacrylamide), PNIPAM) and a reinforcing polymer (polyetherketone cardo, PEK-c). The two polymers are thermodynamically incompatible in solution and phase separation takes place, which allows the instant formation of islands-in-the-sea nanofibers upon electrospinning. PNIPAM was then crosslinked post-spinning using an oligomeric silsesquioxane. The formed nanocomposite nanofibers showed intrinsic nanostructure, where the fibril-like PNIPAM domains are intimately adjacent to the strong PEK-c domains. Upon contacting with water, the hydrogel domains became instantly highly swollen, while the PEK-c domains did not. As a result, very wrinkly, swollen fibers were obtained, with increased capillary action, as demonstrated through confocal microscopy. The composite nanofibers in water showed excellent swelling ratios and very fast responses to temperature variations (of the order of 1 second) with morphological and optical effects: variations in fiber-diameter were accompanied by optical transitions: transparent-opaque. The produced hydrogel nanofibers also presented improved mechanical properties (even with small amounts of PEK-c), when compared to their crosslinked-PNIPAM-only nanofibers. It will be also shown how these materials can be used as optical actuators and smart hydrogel platforms with tuneable contact angle and morphology. In brief, this work aims to demonstrate a new platform technology which can be applied to several hydrogel systems, to achieve hydrogel-based composites with new and improved properties, while retaining (and improving) the main properties of the hydrogel. Here this was demonstrated by showing that the composite materials showed thermo-responsiveness, and enhanced transition kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable and re-usable thermo-responsive hydrogel nanofibres were roduced by electrospinning poly(Nisopropylacrylamide) (PNIPAM) in presence of a polyhedral oligomeric silsesquioxane (POSS) possessing eight epoxide groups, and of a 2-ethyl-4-methylimidazole (EMI) as a catalyst, followed by a heat curing treatment. The roles of the organic-base catalyst in the formation of crosslinked polymer network, fibre morphologies, and hydrogel properties were examined in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phthalocyanine (Pc) is a type of promising sensitizer molecules for photodynamic therapy (PDT), but its hydrophobicity substantially prevents its applications. In this study, we efficiently encapsulate Pc into poly(N-isopropylacrylamide) (pNIPAM) microgel particles, without or with lipid decoration (i.e., Pc@pNIPAM or Pc@pNIPAM/lipid), to improve its water solubility and prevent aggregation in aqueous medium. The incorporation of lipid molecules significantly enhances the Pc loading efficiency of pNIPAM. These Pc@pNIPAM and Pc@pNIPAM/lipid composite microspheres show thermo-triggered release of Pc and/or lipid due to the phase transition of pNIPAM. Furthermore, in the in vitro experiments, these composite particles work as drug carriers for the hydrophobic Pc to be internalized into HeLa cells. After internalization, the particles show efficient fluorescent imaging and PDT effect. Our work demonstrates promising candidates in promoting the use of hydrophobic drugs including photosensitizers in tumor therapies. © 2014 by the authors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A type of photo- and thermo-responsive composite microsphere composed of reduced graphene oxide nanoparticles and poly(N-isopropylacrylamide) (rGO@pNIPAM) is successfully fabricated by a facile solution mixing method. Due to the high optical absorbance and thermal conduction of rGO, the composite microspheres are endowed with the new property of photo-response, in addition to the intrinsic thermally sensitive property of pNIPAM. This new ability undoubtedly enlarges the scope of applications of the microgel spheres. Furthermore, through controlling the rGO content in the composite, the photo- and thermo-sensitivity of the composite can be effectively modulated. That is, with a lower rGO content (≤32% by weight), the composite microspheres perform only thermally induced changes, such as volume contraction (by ∼45% in diameter) and drug release, when crossing the lower critical solution temperature of pNIPAM. With a higher rGO content (∼47.5%), both temperature and light irradiation can trigger changes in the composite. However, when the rGO content is increased to around 64.5%, the thermo-responsivity of the composite disappears, and the spheres exhibit only photo-induced drug release. With a further increase in rGO content, the environmentally responsive ability of the microspheres vanishes. This journal is © the Partner Organisations 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel biodegradable pH- and salinity-responsive cellulose copolymer was prepared by grafting 2-(Dimethylamino) ethylmethacrylate (DMAEMA) onto bagasse cellulose in ionic liquid. The grafting polymerization was achieved in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) under microwave irradiation. Copolymers were then characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and thermo gravimetric analysis measurements. The results revealed that polymer chains had been successfully bonded to the cellulose backbone. Furthermore, the self-assembly of cellulose-g-DMAEMA copolymers at various salt concentrations and pH solution were investigated by means of swelling behavior measurement. It indicated that the copolymers presented dual pH and salinity-responsive properties. The synthetic strategy showed great potential in the modification of other cellulosic biomass to afford new biomaterials with desired properties. © 2014 Springer Science+Business Media Dordrecht.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Riboflavin-responsive, multiple acylcoenzyme A dehydrogenase deficiency (RR-MAD), a lipid storage myopathy, is characterized by, among others, a decrease in fatty acid (FA) ß-oxidation capacity. Muscle uncoupling protein 3 (UCP3) is up-regulated under conditions that either increase the levels of circulating free FA and/or decrease FA ß-oxidation. Using a relatively large cohort of seven RR-MAD patients, we aimed to better characterize the metabolic disturbances of this disease and to explore the possibility that it might increase UCP3 expression. A battery of biochemical and molecular tests were performed, which demonstrated decreases in FA ß-oxidation and in the activities of respiratory chain complexes I and II. These metabolic alterations were associated with increases of 3.1- and 1.7-fold in UCP3 mRNA and protein expression, respectively. All parameters were restored to control values after riboflavin treatment. We postulate that the up-regulation of UCP3 in RR-MAD is due to the accumulation of muscle FA/acylCoA. RR-MAD is an optimal model to support the hypothesis that UCP3 is involved in the outward translocation of an excess of FA from the mitochondria and to show that, in humans, the effects of FA on UCP3 expression are direct and independent of fatty acid ß-oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central proposition of motivational posturing theory is that regulatees place social distance between themselves and authority, communicating the nature of that distance through a narrative that protects the self from negative appraisal by the authority. One of the key components of posturing is the coping sensibility that individuals adopt to manage the threat of authority. At a baseline level, authorities make demands on citizens and as such threaten individual freedom. At the highest level, authorities threaten through punishment for non-compliance. Data collected from 3,253 randomly selected Australian taxpayers and a special group of 2,292 taxpayers in conflict with the tax authority are used to show that in both groups, three coping sensibilities contribute to posturing ("thinking morally,""feeling oppressed," and "taking control"), and that all three sensibilities are significantly heightened in the group experiencing conflict with the authority. The article argues that the most effective regulatory outcome is achieved when the regulatory process can dampen the "taking control" and "feeling oppressed" sensibilities, and strengthen the "thinking morally" sensibility. Responsive regulation is an approach that encourages tax authorities to read motivational postures, understand the sensibilities that shape them, and tailor a regulatory intervention accordingly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a context of global warming and our needs to reduce CO\d2 emissions, building envelopes will play an important role. A new imperative has been put forth to architects and engineers to develop innovative materials, components and systems, in order to make building envelopes adaptive and responsive to variable and extreme climate conditions. Envelopes serve multiple functions, from shielding the interior environment to collecting, storing and generating energy. Perhaps a more recent concern of terrestrial habitats is permeability and leakages within the building envelope. Such airtight and concealed envelopes with zero particle exchange are a necessity and already exist in regard to space capsules and habitats.

This paper attempts to acknowledge existing and visionary envelope concepts and their functioning in conjunction with maintaining a favorable interior environment. It introduces several criteria and requirements of advanced fa\acades along with interior pressurization control. Furthermore, the paper also takes a closer look at the principles of "biomimicry" of natural systems combined with the most up-to-date building materials and construction technologies, trying to integrate the notions of adaptation - where the capacity to survive depends on the ability to adjust to the environment - within the concept of technological evolution and innovation. An "adaptive" attitude in the way in which we conceive our built structures provides a conceptual basis for the advanced building design of our future, as well as one concerned about the efficient management of the available resources. Built environments of the future (in extreme climates or not) will need to respond to Renewable, Adaptive, Recyclable and Environmental (R.A.R.E.) concepts in order to coexist in a sustainable way with their surroundings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents an integrated model for computing the thermo-mechanical parameters (cross-sectional shape of workpiece, the pass-by-pass strain and strain rate and the temperature variation during rolling and cooling between inter-stands) and metallurgical parameters (recrystallisation behaviour and austenite grain size—AGS), to assess the potential for developing “Thermo-Mechanical Controlled Process” technology in rod (or bar) rolling, which has been a well-known technical terminology in strip (or plate) rolling since 1970s.

The advantage of this model is that metallurgical and mechanical parameters are obtained simultaneously in a short computation time compared with other models. The model has been applied to a rod mill to predict the exit cross-sectional shape, area and AGS per pass by incorporating the equations for AGS evolution being used in strip rolling. At the finishing train of rod mills, the strain rates reach as high as 1000–3000 s−1 and the inter-pass times are around 10–60 ms.

The results show that the proposed model is an efficient tool for evaluating the effects of process-related parameters on product quality and dimensional tolerance of the products in rod (or bar) rolling. The results of the simulation demonstrated that the equation for AGS evolution being used in strip rolling might have limitations when applied directly to rod rolling at a high strain rate.