17 resultados para surface topography measurement

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quality of a machined finish plays a major role in the performance of milling operations, good surface quality can significantly improve fatigue strength, corrosion resistance, or creep behaviour as well as surface friction. In this study, the effect of cutting parameters and cutting fluid pressure on the quality measurement of the surface of the crest for threads milled during high speed milling operations has been scrutinised. Cutting fluid pressure, feed rate and spindle speed were the input parameters whilst minimising surface roughness on the crest of the thread was the target. The experimental study was designed using the Taguchi L32 array. Analysing and modelling the effective parameters were carried out using both a multi-layer perceptron (MLP) and radial basis function (RBF) artificial neural networks (ANNs). These were shown to be highly adept for such tasks. In this paper, the analysis of surface roughness at the crest of the thread in high speed thread milling using a high accuracy optical profile-meter is an original contribution to the literature. The experimental results demonstrated that the surface quality in the crest of the thread was improved by increasing cutting speed, feed rate ranging 0.41-0.45 m/min and cutting fluid pressure ranging 2-3.5 bars. These outcomes characterised the ANN as a promising application for surface profile modelling in precision machining.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Silkworm cocoons are biological composite structures protecting the silkworms against environmental damage and physical attack by natural predators. In particular, some outdoor reared silk cocoons exhibit outstanding mechanical properties that are relevant to the higher level protection required to enhance the survival chance of silkworms while supporting their metabolic activity. The performance of composite materials strongly depends on the adhesion between the fiber reinforcement and matrix, with the surface properties of the fibers playing a key role in determining the level of adhesion achieved. For this reason it is important to study the surface properties of silk fibroin to further understand the composite properties of the cocoons. In this work, both the mechanical properties of the silk cocoons and silk fibroin were studied. The surface topography was examined using scanning probe microscopy (SPM), which revealed distinct longitudinal ridges and striations along the fiber axis of the four silk fiber types. The fibers were found to exhibit heterogeneity in surface energy as evidenced from inverse gas chromatography (IGC) measurements. The combination of excellent mechanical properties and the more energetically heterogeneous surface nature of the wild A. pernyi silk fibroin fibers correlates well with the excellent mechanical properties of the A. pernyi cocoons. This journal is

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The performance of composite laminates depends on the adhesion between the fibre reinforcement and matrix, with the surface properties of the fibres playing a key role in determining the level of adhesion achieved. For this reason it is important to develop an in-depth understanding of the surface functionalities on the reinforcement fibres. In this work, multi-scale surface analysis of carbon fibre during the three stages of manufacture; carbonisation, electrolytic oxidation, and epoxy sizing was carried out. The surface topography was examined using scanning electron microscopy (SEM), which revealed longitudinal ridges and striations along the fibre-axis for all fibre types. A small difference in surface roughness was observed by scanning probe microscopy (SPM), while the coefficient of friction measured by an automated single fibre tester showed 51% and 98% increase for the oxidised and sized fibres, respectively. The fibres were found to exhibit heterogeneity in surface energy as evidenced from SPM force measurements. The unsized fibres were much more energetically heterogeneous than the sized fibre. A good correlation was found between fibre properties (both physical and chemical) and interlaminar shear strength (ILSS) of composites made from all three fibre types. © 2014 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modification of an interface on a molecular level with more than one molecular ‘building block' is essentially an example of the ‘bottom–up' fabrication principle of nanotechnology. The fabrication of such integrated molecular systems in electrochemistry has seen rapid progress in recent years via the development of sensing interfaces fabricated using self-assembled monolayers (SAMs). This review outlines recent advances and applications of self-assembled monolayers for modifying electrodes with an emphasis on the development of integrated molecular systems. First, some basic issues regarding fabricating integrated molecular systems, such as the role of the surface topography of the electrode and patterning surfaces, are discussed. Subsequently an overview of recent developments in pH, inorganic and bio sensing involving the use of SAMs is given. Finally emerging trends in using molecular building blocks in the fabrication of integrated molecular systems, such as nanotubes, dendrimers and nanoparticles, are reviewed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The fabrication of enzyme electrodes using self-assembled monolayers (SAMs) has attracted considerable interest because of the spatial control over the enzyme immobilization. A model system of glucose oxidase covalently bound to a gold electrode modified with a SAM of 3-mercaptopropionic acid was investigated with regard to the effect of fabrication variables such as the surface topography of the underlying gold electrode, the conditions during covalent attachment of the enzyme and the buffer used. The resultant monolayer enzyme electrodes have excellent sensitivity and dynamic range which can easily be adjusted by controlling the amount of enzyme immobilized. The major drawback of such electrodes is the response which is limited by the kinetics of the enzyme rather than mass transport of substrates. Approaches to bringing such enzyme electrodes into the mass transport limiting regime by exploiting direct electron transfer between the enzyme and the electrode are outlined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of deriving spatial relationships between objects in general requires high lever' abstract representation, and it would pose difficulties even for human observer. Based on a formalism for spatial layouts proposed earlier, we present methods for deducing spatial relations between objects by an active, sighted agent in a large-scale environment. The deduction of spatial relations is based on simple visual clues, and thus this technique is more feasible than schemes that rely on complex object recognition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of deriving spatial relationships between objects in general requires high level abstract representation, and it would pose difficulties even for human observer. Based on a formalism for spatial layouts proposed earlier [KiV92, VeK921, we present methods for deducing high level spatial relations between objects by an active, sighted agent in a large-scale environment. The deduction of spatial relations is based on simple visual clues, and thus this technique is more feasible than schemes that rely on complex object recognition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Complex molecules have been successfully grafted onto the surface of unsized carbon fibre, a heterogeneous material which is a challenge to functionalise. The in situ generation of highly reactive phenyldiazo-species from their corresponding anilines was employed to achieve this task. The success of an initial proof-of-concept study (bearing a nitro moiety) supported by X-ray Photoelectron Spectroscopy (XPS) and physical characterisation, led to the design and synthesis of a more complex compound possessing a pendant amine moiety which could theoretically react with an epoxide based resin. After attachment to unsized oxidised fibres, analysis by XPS of the resulting fibres (fluorine used as an XPS tag) indicated a marked difference in functionalisation success which was attributed to steric factors, shown to be critical in influencing the attachment of the phenyldiazo-intermediate to the carbon fibre surface. Analysis of key fibre performance parameters of these fibres showed no change in elastic modulus, strength, surface topography or microscopic roughness when compared to the control unsized oxidised fibres. The functionalised fibres did however show a large increase in coefficient of friction. Single fibre fragmentation tests indicated a marked increase in interfacial shear strength, which was attributed to the pendent amine functionalities interacting with the epoxy resin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the volume of work that has been conducted on the topic, the role of surface topography in mediating bacterial cell adhesion is not well understood. The primary reason for this lack of understanding is the relatively limited extent of topographical characterisation employed in many studies. In the present study, the topographies of three sub-nanometrically smooth titanium (Ti) surfaces were comprehensively characterised, using nine individual parameters that together describe the height, shape and distribution of their surface features. This topographical analysis was then correlated with the adhesion behaviour of the pathogenic bacteria Staphylococcus aureus and Pseudomonas aeruginosa, in an effort to understand the role played by each aspect of surface architecture in influencing bacterial attachment. While P. aeruginosa was largely unable to adhere to any of the three sub-nanometrically smooth Ti surfaces, the extent of S. aureus cell attachment was found to be greater on surfaces with higher average, RMS and maximum roughness and higher surface areas. The cells also attached in greater numbers to surfaces that had shorter autocorrelation lengths and skewness values that approached zero, indicating a preference for less ordered surfaces with peak heights and valley depths evenly distributed around the mean plane. Across the sub-nanometrically smooth range of surfaces tested, it was shown that S. aureus more easily attached to surfaces with larger features that were evenly distributed between peaks and valleys, with higher levels of randomness. This study demonstrated that the traditionally employed amplitudinal roughness parameters are not the only determinants of bacterial adhesion, and that spatial parameters can also be used to predict the extent of attachment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Commercial purity titanium with an average grain size in the low sub-micron range was produced by equal channel angular pressing (ECAP). Attachment of human bone marrow-derived mesenchymal stem cells (hMSCs) to the surface of conventional coarse grained and ECAP-modified titanium was studied. It was demonstrated that the attachment and spreading of hMSCs in the initial stages (up to 24h) of culture was enhanced by grain refinement. Surface characterization by a range of techniques showed that the main factor responsible for the observed acceleration of hMSC attachment and spreading on titanium due to grain refinement in the bulk is the attendant changes in surface topography on the nanoscale. These results indicate that, in addition to its superior mechanical properties, ECAP-modified titanium possesses improved biocompatibility, which makes it to a potent candidate for applications in medical implants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of the ultrafine crystallinity of commercial purity grade 2 (as-received) titanium and titanium modified by equal channel angular pressing (modified titanium) on bacterial attachment was studied. A topographic profile analysis of the surface of the modified titanium revealed a complex morphology of the surface. Its prominent micro- and nano-scale features were 100-200-nm-scale undulations with 10-15 microm spacing. The undulating surfaces were nano-smooth, with height variations not exceeding 5-10 nm. These surface topography characteristics were distinctly different from those of the as-received samples, where broad valleys (up to 40-60 microm) were detected, whose inner surfaces exhibited asperities approximately 100 nm in height spaced at 1-2 microm. It was found that each of the three bacteria strains used in this study as adsorbates, viz. Staphylococcus aureus CIP 68.5, Pseudomonas aeruginosa ATCC 9025 and Escherichia coli K12, responded differently to the two types of titanium surfaces. Extreme grain refinement by ECAP resulted in substantially increased numbers of cells attached to the surface compared to as-received titanium. This enhanced degree of attachment was accompanied with an increased level of extracellular polymeric substances (EPS) production by the bacteria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies of biomaterial surfaces and their influence on cell behavior provide insights concerning the design of surface physicochemical and topography properties of implant materials. Fabrication of biocompatible metal oxide nanotubes on metallic biomaterials, especially titanium alloys such as Ti50Zr via anodization, alters the surface chemistry as well as surface topography of the alloy. In this study, four groups of TiO2-ZrO2-ZrTiO4 nanotubes that exhibit diverse nanoscale dimensional characteristics (i.e. inner diameter Di, outer diameter Do and wall thicknesses Wt) were fabricated via anodization. The nanotubes were annealed and characterized using scanning electron microscopy and 3-D profilometry. The potential applied during anodization influenced the oxidation rate of titanium and zirconium, thereby resulting in different nanoscale characteristics for the nanotubes. The different oxidation and dissolution rates both led to changes in the surface roughness parameters. The in vitro cell response to the nanotubes with different nanoscale dimensional characteristics was assessed using osteoblast cells (SaOS2). The results of the MTS assay indicated that the nanotubes with inner diameter (Di)≈40nm exhibited the highest percentage of cell adhesion of 41.0%. This result can be compared to (i) 25.9% cell adhesion at Di≈59nm, (ii) 33.1% at Di≈64nm, and (iii) 33.5% at Di≈82nm. The nanotubes with Di≈59nm exhibited the greatest roughness parameter of Sa (mean roughness), leading to the lowest ability to interlock with SaOS2 cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Direct measurements of a long-range force between charged solid surfaces in a nonpolar liquid are presented for the first time. Measurements were made between mica surfaces in solutions of the anionic surfactant sodium di-2-ethylhexylsulfosuccinate (AOT) at millimolar concentrations in n-decane using a surface force apparatus which has been modified to improve its sensitivity for detecting a weak and long-range force. Modifications include a magnetic drive system, the use of a weak cantilever spring with the apparatus mounted in a vertical configuration, and a detailed consideration of the interference optics to allow accurate measurements of surface separations up to several micrometers. The results show a repulsion that is well fitted by theoretical curves based on a model in which only counterions enter the calculation, in other words, in the absence of a reservoir of ions in the solvent. Fitting the theory to the data allows an estimate of the mica surface charge density of ∼1 mC/m2. A mechanism for surface charging of mica in this solution is proposed, which includes a role for trace amounts of water that are inevitably present and adsorbed surface aggregates of AOT. The relevance of the results to previously observed charge stabilization of colloids in nonaqueous solvents is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Forces between mica surfaces immersed in Me4NBr, Pr4NBr, and Pe4NBr solutions over a wide concentration range are reported (Me = methyl, Pr = propyl, Pe = pentyl). In each case the cation adsorbs quite strongly onto the negatively charged mica surface and determines the double-layer potential. However, this strong adsorption does not cause complete neutralization of the negative lattice charge apparently because of packing constraints due to the large size of these ions. Adsorption of Me4N+ ions gives rise to a short-range (<2 nm) repulsive force similar to that previously observed between bilayers of CTAB and may be due to the residual hydration of these ions. The large rations also, unexpectedly, give rise to short-range repulsive forces but of a somewhat different nature. In this case, the repulsive forces can be explained by assuming that the large adsorbed ions shift the plane of charge a distance of one ion diameter from the mica surface. At all but very high concentrations these larger ions could be displaced from the mica surfaces on forcing them together. No evidence of any “hydrophobic attraction” was observed between surfaces containing these adsorbed ions. Previous studies on coagulation are discussed in the light of our results.