112 resultados para sodium depletion

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We examined the effect of ω-3 polyunsaturated fatty acid (PUFA) deficiency during development on sodium appetite. Being raised on an ω-3 PUFA deficient diet increased the intake of 0.5 M NaCl following furosemide-induced sodium depletion by 40%. This occurred regardless of the diet they were maintained on later in life, and the increased consumption persisted for 3 days. In a second study, animals were administered furosemide and low-dose captopril. Sodium consumption of deficient raised animals was again higher than that of the control raised. Fos immunoreactivity in brain areas associated with sodium appetite and excretion were not influenced by diet. Our findings indicate that inadequate dietary ω-3 PUFA during development results in an exaggerated sodium appetite later in life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na+/H+ exchangers are integral membrane proteins that exchange Na+ and H+ across cell membranes. The Na+/H+ exchangers 2 and 3 are epithelial isoforms in mammals and contribute to acid–base homeostasis. The gills of fishes, including elasmobranchs, are also associated with acid/base balance, and are probably the primary acid/base regulatory organ. This study examines the presence of Na+/H+ exchangers 2 and 3 using immunohistochemistry and immunoblotting in the gills of four species of elasmobranchs, the banjo ray (Trygonorrhina fasciata), southern eagle ray (Myliobatis australis), the gummy shark (Mustelus antarcticus) and the Australian angel shark (Squatina australis) using heterologous antibodies. Na+/H+ exchanger 2-like immunoreactivity was observed in the gills of the banjo ray, eagle ray and angel shark. In the banjo and eagle rays, this Na+/H+ exchanger-like immunoreactivity co-localised with immunoreactivity to Na+/K+-ATPase, a marker for the mitochondrial-rich cells of fishes. Na+/H+ exchanger 3-like immunoreactivity was only observed in the gills of the angel and gummy sharks, some Na+/H+ exchanger 3-like cells also showed Na+/K+-ATPase immunoreactivity. However, immunoblotting of banjo and eagle ray gill membranes demonstrated Na+/H+ exchanger 3-like immunoreactivity, which was not consistent with the immunohistochemical results. These data demonstrate the presence of epithelial Na+/H+ exchangers 2 and 3 in the gills of elasmobranchs and a link with acid/base regulation is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-automated flow injection instrumentation, incorporating a small anion exchange column coupled with tris(2,2′-bipyridyl)ruthenium(II) (Ru(bipy)32+) chemiluminescence detection, was configured and utilised to develop rapid methodology for the determination of sodium oxalate in Bayer liquors. The elimination of both negative and positive interferences from aluminium(III) and, as yet, unknown concomitant organic species, respectively are discussed. The robustness of the methodology was considerably enhanced by using the temporally stable form of the chemiluminescence reagent, tris(2,2′-bipyridyl)ruthenium(III) perchlorate in dry acetonitrile. Real Bayer process samples were analysed and the results obtained compared well with those performed using standard methods within industrial laboratories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reducing dietary sodium reduces blood pressure (BP), a major risk factor for cardiovascular disease, but few studies have specifically examined the effect on BP of altering dietary sodium in the context of a high potassium diet. This randomized, crossover study compared BP values in volunteer subjects self-selecting food intake and consuming low levels of sodium (Na+; 50 mmol/d) with those consuming high levels of sodium (> or =20 mmol/d), in the context of a diet rich in potassium (K+). Sodium supplementation (NaSp) produced the difference in Na+ intake. Subjects (n = 108; 64 women, 44 men; 16 on antihypertensive therapy) had a mean age of 47.0 ± 10.1 y. Subjects were given dietary advice to achieve a low sodium (LS) diet with high potassium intake (50 mmol Na+/d, >80 mmol K+/d) and were allocated to NaSp (120 mmol Na+/d) or placebo treatment for 4 wk before crossover. The LS diet decreased urinary Na+ from baseline, 138.7 ± 5.3 mmol/d to 57.8 ± 3.8 mmol/d (P < 0.001). The NaSp treatment returned urinary Na+ to baseline levels 142.4 ± 3.7 mmol/d. Urinary K+ increased from baseline, 78.6 ± 2.3 to 86.6 ± 2.1 mmol/d with the LS diet and to 87.1 ± 2.1 mmol/d with NaSp treatment (P < 0.001). The LS diet reduced home systolic blood pressure (SBP) by 2.5 ± 0.8 mm Hg (P = 0.004), compared with the NaSp treatment. Hence, reducing Na+ intake from 140 to 60 mmol/d significantly decreased home SBP in subjects dwelling in a community setting who consumed a self-selected K+-rich diet, and this dietary modification could assist in lowering blood pressure in the general population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When aqueous sodium borohydride (50 mM) is added to a solution of potassium permanganate (1mM, in sodium hexametaphosphate) at acidic pH, bright red-orange emission is easily visible in a darkened room. This chemiluminescence emission is due to an excited state of manganese (II) that undergoes solution phase phosphorescence and provides an excellent opportunity for students to explore the relationship between the initial oxidation state of the manganese and the likelihood of luminescence. Not surprisingly Mn(VII), Mn(IV) and Mn(III) all give rise to chemiluminescence where as Mn(II) fails to react.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to study potential mixture interactions among bitter compounds, selected sodium salts were added to five compounds presented either alone or as binary bitter- ompound mixtures. Each compound was tested at a concentration that elicited ‘weak’ perceived bitterness. The bitter compounds were mixed at these concentrations to form a subset of possible binary mixtures. For comparison, the concentration of each solitary compound was doubled to measure bitterness inhibition at the higher intensity level elicited by the mixtures. The following sodium salts were tested for bitterness inhibition: 100 mM sodium chloride (salty), 100 mM sodium gluconate (salty), 100 and 20 mM monosodium glutamate (umami), and 50 mM adenosine monophosphate disodium salt (umami). Sucrose (sweet) was also employed as a bitterness suppressor. The sodium salts differentially suppressed the bitterness of compounds and their binary combinations. Although most bitter compounds were suppressed, the bitterness of tetralone was not suppressed, nor was the bitterness of the binary mixtures that contained it. In general, the percent suppression of binary mixtures of compounds was predicted by the average percent suppression of its two components. Within the constraints of the present study, the bitterness of mixtures was suppressed by sodium salts and sucrose independently, with few bitter interactions. This is consistent with observations that the bitter taste system integrates the bitterness of multi-compound solutions linearly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bitterness is an ongoing taste problem for both the pharmaceutical and food industries. This paper reports on how salts (NaCI, NaAcetate, NaGluconate, LiCI, KCI) and bitter compounds (urea, quinine-HCI, caffeine, amiloride-HCI, magnesium sulfate, KCI) interact to influence bitter perception. Sodium salts differentially suppress bitterness of these compounds; for example urea bitterness was suppressed by over 70% by sodium salts, while MgSO4 bitterness was not reduced. This study indicated that lithium ions had the same bitter suppressing ability as sodium ions, however the potassium cation had no bitter suppression ability. Changing the anion attached to the sodium did not affect bitter suppression, however, as the anion increased in size, perceived saltiness decreased. This indicates that sodium's mode of action is at the peripheral taste level, rather than a cognitive affect. A second experiment revealed that suppressing bitterness with a sodium salt in a bitter/sweet mixture causes an increase in sweetness. This suggests adding salt to a food matrix will not only increase salt perception, but also potentiate flavor by differential suppression of undesirable tastes such as bitter, while increasing more desirable tastes such as sweet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basic activated alumina with negatively charged surface is considered as a potential adsorbent for a targeted molecule with positive polarity. Adsorption of sodium by basic activated alumina was investigated as a method for desalting dairy waste streams, in which sodium ion concentration averaged 600 mg/L. Sodium equilibrium and kinetic adsorption were investigated using basic activated alumina with synthetic brines. The results of equilibrium adsorption show that uptake of sodium by activated alumina is significantly higher when the pH is greater than 8 and increases as the pH of the brines increases until pH reaches around 10. The results of kinetic adsorption show that 90 hours were needed to reach equilibrium for sodium adsorption. Binding and diffusion processes are suggested to have taken place within the activated alumina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background

Despite the importance of the sodium-restricted diet (SRD) to heart failure (HF) management, patient adherence is poor. Little is known about gender differences in adherence or factors that affect patients' ability to follow SRD recommendations. The purposes of this study were to determine whether there were gender differences in (1) adherence to the SRD; (2) knowledge about SRD and HF self-care; and (3) perceived barriers to following the SRD.
Methods and Results

Forty-one men and 27 women completed the Heart Failure Attitudes and Barriers questionnaire that measured HF self-care, knowledge, and perceived barriers to follow an SRD. Diet adherence was measured by 24-hour urinary sodium excretion (UNa). Women were more adherent to the SRD than men as reflected by 24-hour urine excretion (2713 versus 3859 mg UNa, P = .01). Women recognized signs of excess sodium intake such as fluid buildup (P = .001) and edema (P = .01) more often than men and had better understanding of appropriate actions to take related to following an SRD. There were no gender differences in perceived barriers to follow an SRD.
Conclusions

Although men and women perceived similar barriers, women were more adherent to the SRD and had greater knowledge about following an SRD. Further investigation of this phenomenon is warranted to determine if better adherence contributes to improved outcomes in women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence to suggest that reduced folate status may be a causative factor in carcinogenesis, particularly colorectal carcinogenesis. Folate is essential for the synthesis of S-adenosylmethionine, the methyl donor required for all methylation reactions in the cell, including the methylation of DNA. Global DNA hypomethylation appears to be an early, and consistent, molecular event in carcinogenesis. We have examined the effects of folate depletion on human-derived cultured colon carcinoma cells using 2 novel modifications to the Comet (single cell gel electrophoresis) assay to detect global DNA hypomethylation and gene region–specific DNA hypomethylation. Colon cells cultured in folate-free medium for 14 d showed a significant increase in global DNA hypomethylation compared with cells grown in medium containing 3µmol/L folic acid. This was also true at a gene level, with folate-deprived cells showing significantly more DNA hypomethylation in the region of the p53 gene. In both cases, the effects of folate depletion were completely reversed by the reintroduction of folic acid to the cells. These results confirm that decreased folate levels are capable of inducing DNA hypomethylation in colon cells and particularly in the region of the p53 gene, suggesting that a more optimal folate status in vivo may normalize any DNA hypomethylation, offering potential protective effects against carcinogenesis. This study also introduces 2 novel functional biomarkers of DNA hypomethylation and demonstrates their suitability to detect folate depletion–induced molecular changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Sodium bicarbonate (NaHCO3) ingestion has been shown to increase both muscle glycogenolysis and glycolysis during brief submaximal exercise. These changes may be detrimental to performance during more prolonged, exhaustive exercise. This study examined the effect of NaHCO3 ingestion on muscle metabolism and performance during intense endurance exercise of ~60 min in seven endurance-trained men. Methods: Subjects ingested 0.3 g·kg-1 body mass of either NaHCO3 or CaCO3 (CON) 2 h before performing 30 min of cycling exercise at 77 ± 1% [latin capital V with dot above]O2peak followed by completion of 469 ± 21 kJ as quickly as possible (~30 min, ~80% [latin capital V with dot above]O2peak). Results: Immediately before, and throughout exercise, arterialized-venous plasma HCO3- concentrations were higher (P < 0.05) whereas plasma and muscle H+ concentrations were lower (P < 0.05) in NaHCO3 compared with CON. Blood lactate concentrations were higher (P < 0.05) during exercise in NaHCO3, but there was no difference between trials in muscle glycogen utilization or muscle lactate content during exercise. Reductions in PCr and ATP and increases in muscle Cr during exercise were also unaffected by NaHCO3 ingestion. Accordingly, exercise performance time was not different between treatments. Conclusion: NaHCO3 ingestion resulted in a small muscle alkalosis but had no effect on muscle metabolism or intense endurance exercise performance in well-trained men.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer's disease is characterized by the accumulation of amyloid-ß peptide, which is cleaved from the amyloid-ß precursor protein (APP). Reduction in levels of the potentially toxic amyloid-ß has emerged as one of the most important therapeutic goals in Alzheimer's disease. Key targets for this goal are factors that affect the regulation of the APP gene. Recent in vivo and in vitro studies have illustrated the importance of copper in Alzheimer's disease neuropathogenesis and suggested a role for APP and amyloid-ß in copper homeostasis. We hypothesized that metals and in particular copper might alter APP gene expression. To test the hypothesis, we utilized human fibroblasts overexpressing the Menkes protein (MNK), a major mammalian copper efflux protein. MNK deletion fibroblasts have high intracellular copper, whereas MNK overexpressing fibroblasts have severely depleted intracellular copper. We demonstrate that copper depletion significantly reduced APP protein levels and down-regulated APP gene expression. Furthermore, APP promoter deletion constructs identified the copper-regulatory region between -490 and +104 of the APP gene promoter in both basal MNK overexpressing cells and in copper-chelated MNK deletion cells. Overall these data support the hypothesis that copper can regulate APP expression and further support a role for APP to function in copper homeostasis. Copper-regulated APP expression may also provide a potential therapeutic target in Alzheimer's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) is known to mediate a multitude of biological effects including inhibition of respiration at cytochrome c oxidase (COX), formation of peroxynitrite (ONOO) by reaction with mitochondrial superoxide (O2• −), and S-nitrosylation of proteins. In this study, we investigated pathways of NO metabolism in lymphoblastic leukemic CEM cells in response to glutathione (GSH) depletion. We found that NO blocked mitochondrial protein thiol oxidation, membrane permeabilization, and cell death. The effects of NO were: (1) independent of respiratory chain inhibition since protection was also observed in CEM cells lacking mitochondrial DNA (ρ0) which do not possess a functional respiratory chain and (2) independent of ONOO formation since nitrotyrosine (a marker for ONOOformation) was not detected in extracts from cells treated with NO after GSH depletion. However, NO increased the level of mitochondrial protein S-nitrosylation (SNO) determined by the Biotin Switch assay and by the release of NO from mitochondrial fractions treated with mercuric chloride (which cleaves SNO bonds to release NO). In conclusion, these results indicate that NO blocks cell death after GSH depletion by preserving the redox status of mitochondrial protein thiols probably by a mechanism that involves S-nitrosylation of mitochondrial protein thiols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background – The DASH type dietary pattern which consists of high fruit, vegetable and dairy products and low saturated fat, is “base-producing” but restricts red meat with no clear justification.
Objective – To compare the BP-lowering effect of Vitality diet (VD), a moderately low sodium, “base” producing modified DASH diet, containing 6 serves/week of lean red meat to a “ high carbohydrate, low fat diet (HCLF diet), with a higher dietary acid load in post-menopausal women.
Design – Ninety-five hypertensive post-menopausal women (46 VD and 49 HCLF) completed a 14-wk randomised parallel study. Home BP was measured daily. Repeat 24-h dietary records and 24-h urine samples were collected fortnightly. Dietary acid load, expressed as potential renal acid load (PRAL), was calculated from nutrient intakes.
Outcomes – During the intervention, the VD group had an average daily consumption of 85 g cooked red meat. They had a mean (± SEM) reduction of 38 ± 7 mmol/d in urinary sodium excretion (P <0.0001), and a 7 ± 4 mmol/d increase in urinary potassium (P = 0.0681), with an estimated 23.1± 2.3 mEq/d lower PRAL than the HCLF group (P <0.0001). The fall in systolic pressure in the VD group tended to be greater by 3 ± 2 mmHg (P = 0.08) than the fall in systolic pressure seen with the HCLF diet. A greater BP-lowering effect of VD was observed among those taking anti-hypertensive medication (n = 17) with a greater 5.5 ± 2.7 mm Hg (P = 0.0518) reduction of systolic BP and greater reduction in diastolic BP by 3.6 ± 1.7 mm Hg (P = 0.0388) compared to the HCLF diet. However, no relationship between BP and PRAL was observed.
Conclusions – A low sodium DASH type dietary pattern with the inclusion of lean red meat was effective in reducing BP in post-menopausal women, particularly in those taking anti-hypertensive medication. This dietary pattern could be recommended for this group who are at increased risk of cardiovascular disease.
This study was funded by Meat & Livestock Australia.