116 resultados para robotic patrolling robot patroller pattugliamento

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a multi-agent based model for a robotic assembly system is presented. Firstly, an organization model is used to construct the multi-agent model. Secondly, a dynamic self-organizing method is then put forward for the multi-agent robotic system to bid and contract the operations. Thirdly, a real multi-agent robotic system is built and assembly experiments are carried out. Finally, the experimental results confirm that the present multi-agent robotic system has flexibility, adaptation and stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an active stereo vision-based learning approach is proposed for a robot to track, fixate and grasp an object in unknown environments. First, the functional mapping relationships between the joint angles of the active stereo vision system and the spatial representations of the object are derived and expressed in a three-dimensional workspace frame. Next, the self-adaptive resonance theory-based neural networks and the feedforward neural networks are used to learn the mapping relationships in a self-organized way. Then, the approach is verified by simulation using the models of an active stereo vision system which is installed in the end-effector of a robot. Finally, the simulation results confirm the effectiveness of the present approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low cost robotic detectors are a promising new approach to combat the disturbing landmine crisis. In this paper a low-cost robotic solution is proposed, we present several control techniques used to improve the precision of the robotic motion. A P and PD controller is applied, and it is concluded that a cascaded control system provides a more stable and accurate response. Two search patterns for landmine detection are considered, rectangular and spiral, these are used to analyse the effectiveness of the control system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control of tele-operated remote robot’s is nothing new; the public was introduced to this 'new' field in 1986 when the Chernobyl cleanup began. Pictures of weird and wonderful robotic workers pouring concrete or moving rubble flooded the world. Integration of force feedback or 'haptics' to remote robot's is a new development and one that is likely to make a big difference in man-machine interaction. Development of haptic capable tele-operation schema is a challenge. Often platform specific software is developed for one off tasks. This research focussed on the development of an open software platform for haptic control of multiple remote robotic platforms. The software utilises efficient server/client architecture for low data latency, while efficiently performing required kinematic transforms and data manipulation in real time. A description of the algorithm, software interface and hardware is presented in this paper. Preliminary results are encouraging as haptic control has been shown to greatly enhances remote positioning tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new robotic grinding process has been developed for a low-powered robot system using a spring balancer as a suspension system. To manipulate a robot-arm in the vertical plane, a large actuator torque is required due to the tool weight and enormous gravity effect. But the actuators of the robot system always exhibit a limited torque capacity. This paper presents a cheap and available system for precise grinding tasks by a low-powered robot system using a suspension system. For grinding operations, to achieve position and force-tracking simultaneously, this paper presents an algorithm of the hybrid position/force-tracking scheme with respect to the dynamic behavior of a spring balancer. Material Removal Rate (MRR) is developed for materials SS400 and SUS304. Simulations and experiments have been carried out to demonstrate the feasibility of the proposed system.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Teleoperation has been used in many applications, allowing a human operator to remotely control a robotic system in order to perform a particular task. Recently haptic teleoperation has focused mainly on improving performance in remote manipulation tasks, however the haptic approach offers similar advantages for teleoperative control of the motion of a mobile robot. This paper describes a prototype system designed to facilitate haptic teleoperation of an all-terrain, articulated track mobile robot. This system utilizes a multi-modal user interface intended to improve operator immersion, reduce operator overload and improve teleoperative task performance. The system architecture facilitates implementation of an application-specific haptic augmentation algorithm in order to improve operator performance in challenging real-world tasks. The contributions of this work can be categorized as the custom mobile platform, teleoperator interface and haptic augmentation strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A continued increase in computing power, sensor capability, software functionality, immersive interfaces and hardware modularity has given robot designers seemingly endless potential in the area of mobile robotics.  While some mobile robotic system designers are focusing on expensive, full-featured platforms, developers are realising the advantages of emerging technology in providing small, low-cost mobile reconnaissance vehicles as expendable teleoperated robotic systems.  The OzBotTM mobile reconnaissance platform presents one such system.  The design objectives of the OzBotTM platform focus on the development of inexpensive, lightweight carry-case sized robots for search and rescue operations, law enforcement scenarios and hazardous environment inspection.  The incorporation of Haptic augmentation provides the teleoperator with improved task immersion for an outdoor search and rescue scenario.  Achieved in cooperation with law enforcement agencies within Australia, this paper discusses the performance of the first four revisions of the OzBotTM platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human hand provides proof that the anthropomorphic configuration, properly controlled, is successful and gives a target to aim at for artificial hand/robot hand researchers. In this paper we discuss the human hand physiology and grasp capabilities. We then provide design on a double thumb, two finger robotic hand. Architecture of the hand, fingers and their dynamic modelling is discussed. Finally, results are reported on the performance of a finger in the hand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To perform under water robotic research requires specialized equipment. A few pieces of electronics atop a set of wheels is not going to cut it. An underwater research platform must be waterproof, reliable, robust, recoverable and easy to maintain. It must also be able to move in 3 dimensions. Finally it must be able to navigate and avoid obstacles. To purchase such a platform can be very expensive. However, for shallow water, a suitable platform can be built from mostly off the shelf items at little cost. This paper describes the design of one such underwater robot including various sensors and communications systems that allow for swarm robotics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One stage in designing the control for underwater robot swarms is to confirm the control algorithms via simulation. To perform the simulation Microsoftpsilas Robotic Studiocopy was chosen. The problem with this simulator and others like it is that it is set up for land-based robots only. This paper explores one possible way to get around this limitation. This solution cannot only work for underwater vehicles but aerial vehicles as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Haptic human-machine interfaces and similar techniques to enhancing human-robotic interaction offer significant potential over conventional approaches. This work considers achieving intuitive motion control of a tracked mobile robotic platform utilising a 3D virtual haptic cone. The 3D haptic cone extends upon existing approaches by introducing of a third dimension to the haptic control surface. It is suggested that this approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst still facilitating simultaneous real-time haptic augmentation regarding the task at hand. The presented approach is considered in the context of mobile robotic teleoperation however offers potential across many applications. Using the 2D haptic control surface as a benchmark, preliminary evaluation of the 3D haptic cone approach demonstrates a significant improvement in the ability to command the robot to cease motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Haptic human-machine interfaces and similar techniques to enhancing human-robotic interaction offer significant potential over conventional approaches. This work considers achieving intuitive motion control of a tracked mobile robotic platform utilising a 3D virtual haptic cone. The 3D haptic cone extends upon existing approaches by introducing of a third dimension to the haptic control surface. It is suggested that this approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst still facilitating simultaneous real-time haptic augmentation regarding the task at hand. The presented approach is considered in the context of mobile robotic teleoperation however offers potential across many applications. Using the 2D haptic control surface as a benchmark, preliminary evaluation of the 3D haptic cone approach demonstrates a significant improvement in the ability to command the robot to cease motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a kinematic modeling method for a bio-inspired robotic fish based on single joint. Lagrangian function of freely swimming robotic fish is built based on a simplified geometric model. In order to build the kinematic model, the fluid force acting on the robotic fish is divided into three parts: the pressure on links, the approach stream pressure and the frictional force. By solving Lagrange's equation of the second kind and the fluid force, the movement of robotic fish is obtained. The robotic fish's motion, such as propelling and turning are simulated, and experiments are taken to verify the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A traffic control device in the form of a humanoid character robot, doll or dummy is used to warn driver of danger ahead on the road. The device can be used on roads, streets and in other sites where there are moving vehicles. The robotic device informs drivers of impending danger by moving its arms and sounding an acoustic alarm. In this way the robot can simulate a policeman or road flagging operator. The device may also include speed detection and preferably speed indication means. The robot may make decisions based on the detected speed of a vehicle and the limit for the area in operating the arms and sound warning means. The robot may also be equipped with a camera or video. The robot may also be controlled wirelessly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When an assistant robotic manipulator cooperatively performs a task with a human and the task is required to be highly reliable, then fault tolerance is essential. To achieve the fault tolerance force within the human robot cooperation, it is required to map the effects of the faulty joint of the robot into the manipulator’s healthy joints’ torque space and the human force. The objective is to optimally maintain the cooperative force within the human robot cooperation. This paper aims to analyze the fault tolerant force within the cooperation and two frameworks are proposed. Then they have been validated through a fault scenario. Finally, the minimum force jump which is the optimal fault tolerance has been achieved.