127 resultados para robotic manipulator

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research into underwater robotic applications is currently a growing field. There are many challenges involved in underwater robotics that are not present in other mediums, such as how the harsh environmental conditions that this environment invokes onto the robot and any equipment that is attached to the robot. In this paper an attachment to an underwater gripper is proposed that adds another Degree Of Freedom to the system, thus allowing the gripper to move along the belly of the robot. Adding this functionality to the gripper has many advantages, some of which involve the robot being able to easily pass a collected object to another robot with minimal interference. This attachment is constructed using 3D printed parts, a waterproofed servomotor and a leadscrew to provide linear motion to a commercial gripper.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper addresses the problem of estimating simultaneously the state and input of a nonlinear system with application to a two link robotic manipulator - the Pendubot. The system nonlinearity comprises a Lipschitz function with respect to the state, and a nonlinear term which is a function of both the state and input. It is shown that under some conditions, an observer can be designed to estimate simultaneously the system’s state and input. Simulation and experimental results, obtained around the inverted equilibrium position, are presented to demonstrate the validity of the approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vision-based tracking of an object using perspective projection inherently results in non-linear measurement equations in the Cartesian coordinates. The underlying object kinematics can be modelled by a linear system. In this paper we introduce a measurement conversion technique that analytically transforms the non-linear measurement equations obtained from a stereo-vision system into a system of linear measurement equations.We then design a robust linear filter around the converted measurement system. The state estimation error of the proposed filter is bounded and we provide a rigorous theoretical analysis of this result. The performance of the robust filter developed in this paper is demonstrated via computer simulation and via practical experimentation using a robotic manipulator as a target. The proposed filter is shown to outperform the extended Kalman filter (EKF).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There are many applications for which reliable and safe robots are desired. For example, assistant robots for disabled or elderly people and surgical robots are required to be safe and reliable to prevent human injury and task failure. However, different levels of safety and reliability are required for different tasks so that understanding the reliability of robots is paramount. Currently, it is possible to guarantee the completion of a task when the robot is fault tolerant and the task remains in the fault-tolerant workspace (FTW). The traditional definition of FTW does not consider different reliabilities for the robotic manipulator's different joints. The aim of this paper is to extend the concept of a FTW to address the reliability of different joints. Such an extension can offer a wider FTW while maintaining the required level of reliability. This is achieved by associating a probability with every part of the workspace to extend the FTW. As a result, reliable fault-tolerant workspaces (RFTWs) are introduced by using the novel concept of conditional reliability maps. Such a RFTW can be used to improve the performance of assistant robots while providing the confidence that the robot remains reliable for completion of its assigned tasks. © 2012 Copyright Taylor & Francis and The Robotics Society of Japan.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vision based tracking of an object using the ideas of perspective projection inherently consists of nonlinearly modelled measurements although the underlying dynamic system that encompasses the object and the vision sensors can be linear. Based on a necessary stereo vision setting, we introduce an appropriate measurement conversion techniques which subsequently facilitate using a linear filter. Linear filter together with the aforementioned measurement conversion approach conforms a robust linear filter that is based on the set values state estimation ideas; a particularly rich area in the robust control literature. We provide a rigorously theoretical analysis to ensure bounded state estimation errors formulated in terms of an ellipsoidal set in which the actual state is guaranteed to be included to an arbitrary high probability. Using computer simulations as well as a practical implementation consisting of a robotic manipulator, we demonstrate our linear robust filter significantly outperforms the traditionally used extended Kalman filter under this stereo vision scenario. © 2008 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When a robotic manipulator is fault tolerant it is beneficial to study the configurations which tolerate non-catastrophic locked joint failures with a minimum relative change for the joint velocities. This problem is addressed using the properties of the condition number of the Jacobian matrix. The relationship between the faults within the joints of the manipulators and the condition number of the Jacobean matrix is used to introduce the optimal configurations for fault recovery. These optimum configurations require a minimum reconfiguration for fault tolerance of robotics manipulators. Then these configurations are studied for a 4-DOF planar manipulator to validate the proposed framework.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fault tolerance for a class of non linear systems is addressed based on the velocity of their output variables. This paper presents a mapping to minimize the possible jump of the velocity of the output, due to the actuator failure. The failure of the actuator is assumed as actuator lock. The mapping is derived and it provides the proper input commands for the healthy actuators of the system to tolerate the effect of the faulty actuator on the output of the system. The introduced mapping works as an optimal input reconfiguration for fault recovery, which provides a minimum velocity jump suitable for static nonlinear systems. The proposed mapping is validated through different case studies and a complementary simulation. In the case studies and the simulation, the mapping provides the commands to compensate the effect of different faults within the joints of a robotic manipulator. The new commands and the compare between the velocity of the output variables for the health and faulty system are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When an assistant robotic manipulator cooperatively performs a task with a human and the task is required to be highly reliable, then fault tolerance is essential. To achieve the fault tolerance force within the human robot cooperation, it is required to map the effects of the faulty joint of the robot into the manipulator’s healthy joints’ torque space and the human force. The objective is to optimally maintain the cooperative force within the human robot cooperation. This paper aims to analyze the fault tolerant force within the cooperation and two frameworks are proposed. Then they have been validated through a fault scenario. Finally, the minimum force jump which is the optimal fault tolerance has been achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

If the end-effector of a robotic manipulator moves on a specified trajectory, then for the fault tolerant operation, it is required that the end-effector continues the trajectory with a minimum velocity jump when a fault occurs within a joint. This problem is addressed in the paper. A way to tolerate the fault is to find new joint velocities for the faulty manipulator in which results into the same end-effector velocity provided by the healthy manipulator. The aim of this study is to find a strategy which optimally redistributes the joint velocities for the remained healthy joints of the manipulators. The optimality is defined by the minimum end-effector velocity jump. A solution of the problem is presented and it is applied to a robotics manipulator. Then through a case study and a simulation study it is validated. The paper shows that if would be possible the joint velocity redistribution results into a zero velocity jump.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hexarot is a robotic manipulator that belongs to the family of axis symmetric parallel mechanisms. The robot is able to move the robot platform or tool center point in six degrees of freedom (DOF). This paper presents the kinematics model of the robot including the inverse and forward kinematics, and its time derivatives. Then using the kinematics formulations, investigation of the nonlinear motion of the Hexarot robot for a desired linear motion path is performed. For this purpose, the concept of curvature of the robot path is used for measuring the nonlinearity of the actual motion of the robot. The nonlinear motion error of the robot is analyzed for the scenario where the platform moves on a linear path between two arbitrary points of the robot workspace. The effects of different parameters on the nonlinear motion error of the mechanism are demonstrated and strategies for motions with low error values are proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new robotic grinding process has been developed for a low-powered robot system using a spring balancer as a suspension system. To manipulate a robot-arm in the vertical plane, a large actuator torque is required due to the tool weight and enormous gravity effect. But the actuators of the robot system always exhibit a limited torque capacity. This paper presents a cheap and available system for precise grinding tasks by a low-powered robot system using a suspension system. For grinding operations, to achieve position and force-tracking simultaneously, this paper presents an algorithm of the hybrid position/force-tracking scheme with respect to the dynamic behavior of a spring balancer. Material Removal Rate (MRR) is developed for materials SS400 and SUS304. Simulations and experiments have been carried out to demonstrate the feasibility of the proposed system.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our present research focuses on kinematic and dynamic modeling of a 3-DOF robotic cutting head for the next generation of CNC machines. The robotic cutting head is one kind of parallel manipulator of 3-PUU type, which has a high flexibility of motion in three-dimensional space. The parallel manipulator consists of three linear servomotors, which drive three connecting rods independently according to the cutting strategy. Being a parallel manipulator, the robotic cutting head has higher stiffness and position accuracy; consequently, higher velocities and accelerations can be achieved. A very suitable application of this mechanism is as a cutting head of a precision machine tool for three-dimensional cutting problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fault tolerance of robotic manipulators is determined based on the fault tolerance measures. In this study a Jacobian of a 7DOF optimal fault tolerant manipulator is designed based on optimality of worse case relative manipulability and worse case dexterity from geometric perspective instead of numerical solution of constrained optimisation problem or construction of optimal Jacobean through a desired null space. The proposed Jacobean matrix is optimal and equally fault tolerant for a single joint failure within any joint of the manipulators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis addresses “Optimal Fault-Tolerant Robotic Manipulators” for locked-joint failures and consists of three components. It begins by investigating the regions of workspace where the manipulator can operate with high reliability. It then continues with an efficient deployment of kinematic redundancies for fault-tolerant operation. Finally, it presents a novel method for design of optimal fault-tolerant manipulators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Improvised Explosive Devices (IEDs) are reported as the number one cause of injury and death for allied troops in the current theater of operation. Deakin University’s Centre for Intelligent Systems Research (CISR) is working on next-generation technology to combat the threat. In 2006 CISR was awarded funding through the Capability and Technology Demonstrator (CTD) Program managed by the Australian Defence Force. The objective was to investigate the use of haptics or force feedback technology for Counter-IED (CIED) tasks. Over the past six years, engineers from CISR have worked alongside Defence stakeholders to develop a series of robotic platforms designed to immerse a soldier in the remote environment. Utilising a natural user interface, haptic force feedback and stereovision, the technology has undergone initial trials in Sydney, Canberra, Woomera and at the CISR testing facility in Geelong, Australia. The technology has proved popular among operators allowing them increased fidelity and manipulation speed while significantly reducing required training. CISR has a history of rapidly delivering technology to meet the needs of police and law enforcement in Australia. The OzBot™ series of robots developed in conjunction with the Victorian Police is currently in service and used extensively for hostage negotiation and first responder roles. The CISR robotics group works on technologies that reduce operator fatigue, minimise training liability and maintenance. Over 55 engineers develop simulation environments for increased training availability and continuous improvement to the current range of mobile platforms, including communications range, payload, manipulator reach and capability. This paper describes a number of the technologies, methods and systems developed by CISR for IED neutralisation, with the aim to increasing military awareness of Australian capability.