111 resultados para protective coatings

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose – To provide a summary of research work carried out mainly in the authors' group for evaluating various protective coatings including rustproofing oils, and also for studying corrosion inhibitors using the wire beam electrode (WBE) method.

Design/methodology/approach – A range of published papers published during the past 15 years was summarised and reviewed. Recent research work in the authors' group was also included, which involved the combined use of the WBE with electrochemical noise analysis and the scanning reference electrode technique.

Findings – The WBE method has been developed into a very useful tool of evaluating the performance of coatings and inhibitors. In particular, The WBE is uniquely applicable for determining the performance of coatings and inhibitors to control localised corrosion.

Research limitations/implications – Focusing mainly on recent research.

Practical implications – A useful source of information for researchers and graduate students working in the areas of organic coating and inhibitor research.

Originality/value – The first summary or review on this research topic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Al and Mg alloys are widely used in industry as main lightweight alloys. They have excellent properties, such as low density, high ductility, and high specific strength, and so on. Generally speaking, Mg alloys are better than Al alloys. However the corrosion of Mg alloys is much more difficult to control compared Al alloys. Therefore to combine these two lightweight alloys, a composite-like structure is an ideal solution since Al alloys can be used as protective coatings for Mg alloys. Compound casting is a realistic technique to get this coating system. In the current study, we numerically study the compound casting using finite element method (FEM) to make these two alloys, a composite-like structure, satisfy requirements to resist corrosion required from industry, in which the aluminum layer is acting as a protective coating for the magnesium substrate. Several finite element models have been developed by using the birth and death element technique and we focus on compound casting-induced residual stresses in the compounded structure. The numerical results obtained from the proposed finite element models show the distribution profiles of thermal residual stresses. We found the major factors influencing the residual stresses are the temperature to pre-heating the Al substrate and the thickness of Mg deposits. © (2014) Trans Tech Publications, Switzerland.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reliable testing methodologies for the assessment of protective coatings are critical for ensuring the integrity and durability of pipeline coatings (such as field joint coatings) and the mitigation of pipeline corrosion. Currently the failure of joint coatings is one of the major concerns in corrosion protection of pipelines, although they represent only approximately 5% of the coated area in a pipeline system. This paper presents an overview of major testing methodologies currently used in the pipeline industry for the selection, testing, and life prediction of coatings, in particular field joint coatings. Particular focus is on the discussion of difficulties and limitations in testing methods for assessing pipeline coating cracking, cathodic disbondment and loss of adhesion. It is shown that there are limitations in current methodologies in evaluating the coating flexibility - a key parameter for avoiding coatings cracking during hydrostatic testing, cyclic pressure operation and field bending. Methodologies for assessing the effect of holidays in coatings on the cathodic disbondment of pipeline coating under excessively negative cathodic protection (CP) voltages also require improvement. Furthermore, methods for understanding the effects of coating wet adhesion on pipeline coating, cracking and disbondment also need attention. Some preliminary results for addressing some of these issues are also presented in this paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Steel pipelines, buried under the soil and protected by the combination of protective coatings and cathodic protection (CP), are used for oil and gas transportation. These pipelines are one of the critical infrastructures for energy transportation and therefore became lifelines of modern society. The deterioration of the external surfaces of transmission pipelines is a serious problem and is caused mainly by coating and/or CP failure leading to the loss of integrity of pipelines. To avoid such damage, there is a need of techniques which are able to locate active corrosion sites, monitor corrosion, and evaluate corrosion damage. Fundamental understanding of such processes occurring on coated pipelines (with various types of defects in coatings as well as pipe) in complex soil environment is necessary for the development of such techniques. Numerous laboratory techniques, i.e., electrochemical impedance spectroscopy based, polarisation measurements based, mathematical simulations, direct observation etc. have been used to develop fundamental understanding, simulate and evaluate corrosion occurring in oil and gas pipelines under various operating conditions. Given the complex nature of the pipeline corrosion, application of these laboratory techniques in field measurements as well as in understanding the corrosion mechanisms is lacking. This paper presents an overview of investigations, based on electrochemical techniques, for simulation and evaluation of pipeline corrosion in laboratory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An approach to achieving the ambitious goal of cost effectively extending the safe operation life of energy pipeline to 100 years is the application of health monitoring and life prediction tools that are able to provide both long-term remnant pipeline life prediction and in-situ pipeline condition monitoring. A critical step is the enhancement of technological capabilities that are required for understanding and quantifying the effects of key factors influencing buried steel pipeline corrosion and environmentally assisted materials degradation, and the development of condition monitoring technologies that are able to provide in-situ monitoring and site-specific warning of pipeline damage. This paper provides an overview of our current research aimed at developing new sensors and electrochemical cells for monitoring, categorising and quantifying the level and nature of external pipeline and coating damages under the combined effects of various inter-related variables and processes such as localised corrosion, coating cracking and disbondment, cathodic shielding, transit loss of cathodic protection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As the intensity of UV radiation increases every year, effective methods to block UV rays to protect human skin, plastics, timber and other polymer materials are urgently sought. Textiles serve as important materials for UV protection in many applications. The utilisation of nanoparticles to textile materials has been the object of several studies aimed at producing finished fabrics with different performances. This article reviews the recent advancement in the field of UV blocking textiles and fibers that are functionalised with nanostructured surface coatings. Different types of UV blocking agents are discussed and various examples of UV blocking textiles utilising ZnO and TiO2 are presented. Future challenges such as wash-fastness and photocatalysis are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The useful life of many outdoor textile products is limited by degradation caused by exposure to sunlight, in particular by the ultra violet component (below 400 nm). The degradation results in fading of colours and also loss of physical properties, such as tear strength and abrasion resistance. Degradation can be decreased with UV absorbers, often used in conjunction with antioxidants or free radical quenchers. The protection afforded by these organic compounds is, however, limited as they are ultimately destroyed by the UV radiation they absorb.
An alternative approach is to coat fabrics with a polymer containing an inorganic UV absorber, such as zinc oxide. The inherent stability of zinc oxide would be expected to provide a protective effect over a much longer period than can be achieved with an organic UV absorber. A possible disadvantage of zinc oxide when applied in a polymer film is that absorption and scattering of visible light can produce hazy films and, hence, an unacceptable change in fabric appearance.
This poster paper examines the possibility of using nano particles of zinc oxide dispersed in acrylic polymers for protecting dyed polyester fabrics against sunlight fading. Factors affecting both UV absorbance and film clarity will be discussed. The possibility will also be examined that the protective effect may be reduced in some circumstances by reactive oxygen species, generated by the interaction of UV with zinc oxide in the presence of air and water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The disbondment of protective organic coatings is a widely reported pipeline coating failure mode in the oil and gas industry. Traditional methods of evaluating cathodic disbondment of pipeline coatings are based on visual inspection of pipeline conditions, and laboratory testing of cathodic disbondment resistance (CDR) using standard methods such as ASTM G8. Although some other laboratory-based techniques, such as scanning kelvin probe and scanning acoustic microscopy have been used to study the cathodic disbondment (CD) of coatings, these are often difficult to apply in practical testing. Over the past decade, electrochemical impedance spectroscopy (EIS) has been employed as a potential method for measuring CD. This paper reports preliminary results from an EIS study designed to characterise CD behaviour of epoxy coatings under excessive cathodic protection. EIS data correlated well with the area of disbonded coating. Analysis of EIS data can provide valuable information on the initiation and rates of CD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today the tool industry on a worldwide basis uses hard, wear-resistant, and low-friction coatings produced by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, chemical-vapor deposition (CVD), and physical vapor deposition (PVD). In the current work, two different coatings, nitrocarburized (CN) and titanium carbonitride (TiCN) on M2-grade tool steel, were prepared by commercial diffusion and PVD techniques, respectively. Properties such as thickness, roughness, and hardness were characterized using a variety of techniques, including glow-discharge optical emission spectrometry (GD-OES) and scanning electron microscopy (SEM). A crossed-cylinders wear-testing machine was used to investigate the performances of both coatings under lubrication. The effect of coatings on the performance of lubricants under a range of wear-test conditions was also examined. Degradation of lubricants during tribological testing was explored by Fourier transform infrared (FTIR) spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galvanneal is a form of zinc-coated sheet steel, where steel is dipped in molten zinc, and then heat treated in a furnace to produce a complex iron-zinc coating. Many industries, such as automotive, use galvanneal for components fabricated from sheet steel. The microstructural properties of galvanneal have a significant influence on how well the sheet metal changes shape on stamping. By means of optical microscopy, scanning electron microscopy, and glow-discharge optical emission spectrometry, we present a study of the microstructure of several galvanneal samples, both stamped and unformed, relating the phases and morphology of the coatings to performance in stamping operations. Samples of galvanneal were subjected to different heat-treatment temperatures. The frequency of defects in stamped components was found to be related to the average alloy content in the coatings, which varied with furnace temperature. An increased average iron content in the coatings was related to increased powdering defects in stamping operations that use galvanneal coated sheet steel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper builds on existing literature on the notion of emotional labour by investigating work in a child protective service environment. Notable characteristics of formal organisations, such as child protective services, are that they operate within a legal framework and that workers' professional duties have great influence on clients. This paper examines the intricacies of the worker-client relationship and the emotional dynamics of the service interactions by interviewing a group of workers in a public hospital in Victoria, Australia. This research extricates the complexities in the client-worker relationship by examining a range of work characteristics including their roles as professional caregivers, the emotional bonds and boundaries in the workers-client relationship, the intensity and magnitude of felt and displayed emotions, as well as the self-management of emotions and clients' emotions. This study adds to existing knowledge on the emotional expressions, experiences and regulation of emotions of the professional work lives in a child protective service work environment.
This paper is divided into the following sections. The first section details protective service work within the larger framework of human service work, and how the worker-client interface is different from other front-line service work. This is followed the need to examine the emotional dynamics of work in a child protective service organisation. Next, a study of these emotional dynamics in a child protective service organisation is reported. The paper concludes with a consideration of the wider implications for the sociology of protective service work, and how affective issues differ other service work roles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple sol–gel method was developed for hydroxyapatite/titania (HA/TiO2) coatings on non-toxic titanium–zirconium (TiZr) alloy for biomedical applications. The HA/TiO2-coated TiZr alloy displayed excellent bioactivity when soaked in a simulated body fluid (SBF) for an appropriate period. Differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy-energy dispersive spectrometry were used to characterize the phase transformations and the surface structures and to assess the in vitro tests. The HA/TiO2 layers were spin-coated on the surface of TiZr alloy at a speed of 3000 rpm for 15 s, followed by a heat treatment at 600 °C for 20 min in an argon atmosphere sequentially. The TiO2 layer exhibited a cracked surface and an anatase structure and the HA layer displayed a uniform dense structure. Both the TiO2 and HA layers were 25 μm thick, and the total thickness of the HA/TiO2 coatings was 50 μm. The TiZr alloy after the above HA/TiO2 coatings displayed excellent bone-like apatite-forming ability when soaked in SBF and can be anticipated to be a promising load-bearing implant material.