16 resultados para plug in

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plug-in hybrid electric vehicle (PHEV), which is a hybrid vehicle whose batteries can be recharged by plugging into an electric power source, is creating many interests due to its significant potential to improve fuel efficiency and reduce pollution. PHEVs would be the next generation of vehicles that are expected to replace conventional hybrid electric vehicles. This paper presents a study on PHEV. It gives a review of different drivetrain architectures associated with PHEVs. In addition, different control strategies that could bring about realization of advantages of PHEV capabilities are discussed and compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been demonstrated that considering the knowledge of drive cycle as a priori in the PHEV control strategy can improve its performance. The concept of power cycle instead of drive cycle is introduced to consider the effect of noise factors in the prediction of future drivetrain power demand. To minimize the effect of noise factors, a practical solution for developing a power-cycle library is introduced. A control strategy is developed using the predicted power cycle which inherently improves the optimal operation of engine and consequently improves the vehicle performance. Since the control strategy is formed exclusively for each PHEV rather than a preset strategy which is designed by OEM, the effect of different environmental and geographic conditions, driver behavior, aging of battery and other components are considered for each PHEV. Simulation results show that the control strategy based on the driver library of power cycle would improve both vehicle performance and battery health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multimedia applications today make use of virtual humans. Generating realistic virtual humans is a challenging problem owing to a number of factors, one being the simulation of realistic hair. The difficulty in simulating hair is due to the physical properties of hair. The average human head holds thousands of hairs, with the width of each hair often smaller than the size of a pixel. There are also complex lighting effects that occur within hair. This paper presents a LightWave 3D plug-in for modeling thousands of individual hairs on virtual humans. The plug-in allows the user to specify the length, thickness and distribution of the hair, as well as the number of segments a hair is made up of. The plug-in is able to add hairs to a head model, which the user then modifies to define a hairstyle. The hairs are then multiplied by the plug-in to produce many hairs. By providing a plug-in that does most of the work and produces realistic results, the user is able to produce a hairstyle without modeling each individual strand of hair. This greatly reduces the time spent on hair modeling, and makes the possibility of adding realistic long hair to virtual humans reasonable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project uses methods of terrain representation, creation and realism described in literature. We find that using a combination of Fractional Brownian Motion and procedural formation of rivers via squig curves to form initial terrain, with hydraulic erosion for post processing, we have full control over the style of terrain: from jagged mountains to flat regions; and the phase of river from tightly rock controlled to flood plain regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been demonstrated that charge depletion (CD) energy management strategies are more efficient choices for energy management of plug-in hybrid electric vehicles (PHEVs). The knowledge of drive cycle as a priori can improve the performance of CD energy management in PHEVs. However, there are many noise factors which affect both drivetrain power demand and vehicle performance even in identical drive cycles. In this research, the effect of each noise factor is investigated by introducing the concept of power cycle instead of drive cycle for a journey. Based on the nature of the noise factors, a practical solution for developing a power-cycle library is introduced. Investigating the predicted power cycle, an energy management strategy is developed which considers the influence of temperature noise factor on engine performance. The effect of different environmental and geographic conditions, driver behavior, aging of battery and other components are considered. Simulation results for a modelled series PHEV similar to GM Volt show that the suggested energy management strategy based on the driver power cycle library improves both vehicle fuel economy and battery health by reducing battery load and temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The desire to reduce carbon emissions due to transportation sources has led over the past decade to the development of new propulsion technologies, focused on vehicle electrification (including hybrid, plug-in hybrid and battery electric vehicles). These propulsion technologies, along with advances in telecommunication and computing power, have the potential of making passenger and commercial vehicles more energy efficient and environment friendly. In particular, energy management algorithms are an integral part of plug-in vehicles and are very important for achieving the performance benefits. The optimal performance of energy management algorithms depends strongly on the ability to forecast energy demand from the vehicle. Information available about environment (temperature, humidity, wind, road grade, etc.) and traffic (traffic density, traffic lights, etc.), is very important in operating a vehicle at optimal efficiency. This article outlines some current technologies that can help achieving this optimum efficiency goal. In addition to information available from telematic and geographical information systems, knowledge of projected vehicle charging demand on the power grid is necessary to build an intelligent energy management controller for future plug-in hybrid and electric vehicles. The impact of charging millions of vehicles from the power grid could be significant, in the form of increased loading of power plants, transmission and distribution lines, emissions and economics (information are given and discussed for the US case). Therefore, this effect should be considered in an intelligent way by controlling/scheduling the charging through a communication based distributed control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research, the significant influence of engine and cabin thermal management on the fuel efficiency and emissions of plug-in hybrid electric vehicles is investigated. A practical solution to implement an optimal energy management strategy of plug-in hybrid electric vehicles which considers the temperature noise factor is introduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient energy management in hybrid vehicles is the key for reducing fuel consumption and emissions. To capitalize on the benefits of using PHEVs (Plug-in Hybrid Electric Vehicles), an intelligent energy management system is developed and evaluated in this paper. Models of vehicle engine, air conditioning, powertrain, and hybrid electric drive system are first developed. The effect of road parameters such as bend direction and road slope angle as well as environmental factors such as wind (direction and speed) and thermal conditions are also modeled. Due to the nonlinear and complex nature of the interactions between PHEV-Environment-Driver components, a soft computing based intelligent management system is developed using three fuzzy logic controllers. The crucial fuzzy engine controller within the intelligent energy management system is made adaptive by using a hybrid multi-layer adaptive neuro-fuzzy inference system with genetic algorithm optimization. For adaptive learning, a number of datasets were created for different road conditions and a hybrid learning algorithm based on the least squared error estimate using the gradient descent method was proposed. The proposed adaptive intelligent energy management system can learn while it is running and makes proper adjustments during its operation. It is shown that the proposed intelligent energy management system is improving the performance of other existing systems. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the problem of estimating the principal axes and their size in the case of several populations under the assumption of a proportional model. We propose robust estimators for the common principal axes and their size. The robust estimators are based on asymptotically normal and equivariant robust scatter estimators. The asymptotic distribution of the robust estimators including the proportionality constants are derived. © 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the control and charge management strategy of a photovoltaic system (PV) with plug-in hybrid electric vehicle (PHEV) as energy storage. The hybrid energy storage system (HESS) of PHEV consists of battery and supercapacitor. A simulation model for the PV system with PHEV energy storage has been developed using Matlab/SimpowerSystems. The system consists of PV arrays, SEPIC dc-dc converter with maximum power point tracking (MPPT), hybrid battery-supercapacitor energy storage with bidirectional dc-dc converter and inverter for grid connection. A charge management algorithm for the hybrid energy storage system is proposed to control the power flows among the PV system, energy storage and the grid. Results show that the proposed power management algorithm can control the power flows in an efficient manner.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a robust nonlinear distributed controller design for islanded operation of microgrids in order to maintain active and reactive power balance. In this paper, microgrids are considered as inverter-dominated networks integrated with renewable energy sources (RESs) and battery energy storage systems (BESSs), where solar photovoltaic generators act as RESs and plug-in hybrid electric vehicles as BESSs to supply power into the grid. The proposed controller is designed by using partial feedback linearization and the robustness of this control scheme is ensured by considering structured uncertainties within the RESs and BESSs. An approach for modeling the uncertainties through the satisfaction of matching conditions is also provided in this paper. The proposed distributed control scheme requires information from local and neighboring generators to communicate with each other and the communication among RESs, BESSs, and control centers is developed by using the concept of the graph theory. Finally, the performance of the proposed robust controller is demonstrated on a test microgrid and simulation results indicate the superiority of the proposed scheme under different operating conditions as compared to a linear-quadratic-regulator-based controller.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, charging effect of dynamic Plug in Hybrid Electric Vehicle (PHEV) is presented in a renewable energy based electricity distribution system. For planning and designing a distribution system, PHEVs are one of the most important factor as it is going to be a spinning reserve of energy, and also a major load for distribution network. A dynamic load model of PHEVs is introduced here based on third order battery model. To determine the system adequacy, it is necessary to do a micro level analysis to know the PHEVs load impact on grid. Scope of such analysis will cover the performance of wind and solar generation with dynamic PHEVs load, as well as the stability analysis of the power grid to demonstrate that it is important to consider the dynamics of PHEVs load in a renewable energy based distribution network.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to low electricity rates at nighttime, home charging for electric vehicles (EVs) is conventionally favored. However, the recent tendency in support of daytime workplace charging that absorbs energy produced by solar photovoltaic (PV) panels appears to be the most promising solution to facilitating higher PV and EV penetration in the power grid. This paper studies optimal sizing of workplace charging stations considering probabilistic reactive power support for plug-in hybrid electric vehicles (PHEVs), which are powered by PV units in medium voltage (MV) commercial networks. In this study, analytical expressions are first presented to estimate the size of charging stations integrated with PV units with an objective of minimizing energy losses. These stations are capable of providing reactive power support to the main grid in addition to charging PHEVs while considering the probability of PV generation. The study is further extended to investigate the impact of time-varying voltage-dependent charging load models on PV penetration. The simulation results obtained on an 18-bus test distribution system show that various charging load models can produce dissimilar levels of PHEV and PV penetration. Particularly, the maximum energy loss and peak load reductions are achieved at 70.17% and 42.95% respectively for the mixed charging load model, where the system accommodates respective PHEV and PV penetration levels of 9.51% and 50%. The results of probabilistic voltage distributions are also thoroughly reported in the paper.