12 resultados para plasma polymerization

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new fabric with potential in medical textiles has been developed by application of a surface coating on wool using pulsed plasma polymerization of HMDSO. This coating enabled a controllable MVTR and surface adhesion. MVTR in the range recommended for optimum wound healing was obtained by varying frequency, monomer pressure and deposition time. Lower surface adhesion was achieved. Peeling tests, contact angle measurements, SPM force curves and ATR FT-IR were used to characterize the surfaces for both wool and a PE model substrate. All these results were consistent with a decrease in surface energy after PP-HMDSO treatment. ATR FT-IR results showed a siloxane film with less organic Si(CH3)n groups and more SiOSi cross-links.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micropatterning of surfaces with varying chemical, physical and topographical properties usually requires a number of fabrication steps. Herein, we describe a micropatterning technique based on plasma enhanced chemical vapour deposition (PECVD) that deposits both protein resistant and protein repellent surface chemistries in a single step. The resulting multifunctional, selective surface chemistries are capable of spatially controlled protein adhesion, geometric confinement of cells and the site specific confinement of enzyme mediated peptide self-assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel approach to producing improved bio-interfaces by combining continuous wave (CW) and pulsed plasma polymerization (PP) modes is reported. This approach has enabled the generation of stable interfaces with a higher density of primary amine functionality on metal, ceramic and semiconductor surfaces. Heptylamine (HA) was used as the amine-precursor. In this new design, a thin CW PPHA layer is introduced to provide strong cross-linking and attachment to the metal or semiconductor surfaces and to provide a good foundation for better bonding a pulsed PPHA layer with high retention of functional groups. The combined mode provides the pulsed mode advantage of a 3-fold higher density of primary amines, while retaining much of the markedly higher stability in aqueous solutions of the continuous mode.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Smooth polymerized surfaces, suitable for biochemical and biomedical applications, were deposited using a modified plasma enhanced chemical vapour deposition method with acetylene as a reaction precursor. Horseradish peroxidase (HRP) activity assays showed that the protein immobilized on the plasma polymerized surfaces maintained its biological function for a much longer period of time compared to that on uncoated surfaces. The kinetics of HRP attachment to the plasma polymerized surfaces were analyzed using quartz crystal microbalance with dissipation analysis. Spectroscopic ellipsometry and attenuated total reflection Fourier transform infrared spectroscopy were used to determine the thickness and the quantity of the attached protein. The results showed that the plasma polymerized surfaces provided a high density of attachment sites to covalently immobilize a dense monolayer of proteins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A three-step plasma treatment, including surface activation with argon, surface functionalization with oxygen and then thin film deposition using a pulsed plasma polymerization of hexamethyldisiloxane (HMDSO), was used in low-pressure plasma to improve the pilling resistance of knitted wool fabric. The pilling propensity of the treated samples was investigated and compared with the pilling propensity of untreated, argon activated and oxygen functionized samples and argon and oxygen plasma-treated samples that were afterwards subject to continuous wave plasma polymerization of HMDSO. With the three-step treatment, a pilling grade of four was achieved for the treated wool fabric, while that of untreated and other plasma-treated was two and three, respectively. For the three-step plasma-treated sample, a uniform HMDSO polymer coating of 300 nm thickness was obtained; X-ray photoelectron spectroscopy (XPS) showed the presence of the silicone element, and Fourier transform infrared (FTIR) spectroscopy confirmed the chemical structure of the coating. No apparent differences were found in the whiteness index between the treated and untreated wool knits, but there was deterioration in the bursting strength and handle of the plasma-treated wool samples.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A three-step plasma treatment—activation, functionalization and polymerization—has been used to deposit a thin plasma polymer with amine groups on carbon fibres (CFs). This plasma polymer has strong adhesion to the CF surface and the amine groups enable strong bonding to a matrix. The CFs were first treated by Ar plasma to activate and clean the surface, followed by O2 plasma to incorporate oxygen-containing functional groups, and finally a heptylamine thin film was deposited using combined continuous wave and pulsed plasma polymerization. Strong adhesion between the plasma polymer and the CF was observed. The fibre strength was not affected by the treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surface of PLA fabric has been successfully modified by pulsed plasma polymerization of heptylamine (PPHA) giving increased hydrophilicity and achieving a sufficient level of primary amine functionality (3.5%) for practical application in biotechnology. This is the first report that the density of primary amine (-NH2) in PPHA, quantified by chemical derivatization, can be controlled by selection of pulsed plasma conditions. The duty cycle and the average RF power were the key parameters for achieving both a higher density of primary amine and increased hydrophilicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

 Improved methods of functionalizing the surfaces of multi-walled carbon nanotubes (MWCNTs) have been investigated. It is shown that a level of primary amines of 2.3%, higher than previously reported for any nitrogen-containing gas plasma treatment, can be achieved using a mixture of N2 and H2, which is preferable to using NH3. Even higher levels (3.5%) of primary amines can be achieved by coating the MWCNTs with a thin layer of plasma polymerized heptylamine. In both cases, the highest levels were achieved using a combined continuous plus pulsed plasma mode which was superior to either continuous wave or pulsed wave alone. The integrity of the MWCNT structure is maintained by the plasma treatments, and the functionalized surface improves the dispersion of the MWCNTs and their interfacial bonding with epoxy, giving superior nanoindentation performance of the composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the physico-chemical effects occasioned by the cold plasma discharge (CPD) on the photo-decolorization of Reactive Orange 16 (RO16) by 3D fabrics (spacer fabrics) loaded with ZnO:TiO2 nano-photocatalysts (nphs) were optimized via response surface methodology (RSM). CPD was employed to improve the surface characteristics of the spacer fabrics for nphs loading. Surface morphology and color variation were studied utilizing scanning electron microscopy (SEM) and CIE-Lab system, respectively. The effect of CPD on the wetting ability of the spacer fabrics was examined using dynamic adsorption measurement (DAM). Also, X-ray fluorescence (XRF) was utilized to investigate the durability of the nphs on the spacer fabrics. All the experiments were implemented in a Box-Behnken design (BBD) with three independent variables (CPD treatment time, dye concentration and irradiation time) in order to optimize the decolorization of RO16. The anticipated values of the decolorization efficiency were found to be in excellent agreement with the experimental values (R2 = 0.9996, Adjusted R2 = 0.9992). The kinetic analysis demonstrated that the photocatalytic decolorization followed the Langmuir-Hinshelwood kinetic model. In conclusion, this heterogeneous photocatalytic process is capable of decolorizing and mineralizing azoic reactive dye in textile wastewater. Moreover, the results confirmed that RSM based on the BBD was a suitable method to optimize the operating conditions of RO16 degradation.