12 resultados para nitride layer

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new solid-state reaction to form metal nitrides has been investigated. It was confirmed that single phase chromium nitride is formed by a solid-state diffusion reaction between iron nitride and chromium chloride powders at temperatures between 570-700°C. The discovered reaction can be applied to form chromium nitride coatings on tool steels for metal forming applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a simple and effective approach for growing large-scale, high-density, and well-patterned conical boron nitride nanorods. A catalyst layer of Fe(NO3)3 was patterned on a silicon substrate by using a copper grid as a mask. The nanorods were grown via annealing milled boron carbide powders at 1300 °C in a flow of nitrogen gas. The as-grown nanorods exhibit uniform morphology and the catalyst pattern precisely defines the position of nanorod deposition. Cathodoluminescence (CL) spectra of the nanorods show two broad emission bands centered at 3.75 and 1.85 eV. Panchromatic CL images reveal clear patterned structure

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When growing one-dimensional (1D) nanomaterials via the vapour–liquid–solid (VLS) model, the substrates usually need to be coated with a layer of catalyst film. In this study, however, an effective approach for the synthesis of boron nitride (BN) nanowires directly onto commercial stainless-steel foils has been demonstrated. Growth occurs by heating boron and zinc oxide (ZnO) powders at 1100 °C under a mixture of nitrogen and hydrogen gas flow (200 ml min−1). The stainless-steel foils played an additional role of catalyst besides substrate during the VLS growth of these BN nanowires. The as-synthesized nanowires emit strong photoluminescence (PL) bands at 515, 535 and 728 nm. In addition, we found that the gas flow rate and the hydrogen content in the gas mixture strongly affected the diameter and yield of the nanowires by changing the relative concentration of the nanowire growth species in the chamber.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thick layer of pure boron nitride (BN) nanowires with a uniform diameter of 20 nm was synthesized for the first time using a CVD process with a new precursor of boron triiodide (BI3). Transmission electron microscopy revealed a nanocrystalline structure in the BN nanowires and the absence of any catalyst particle. Some BN nanowires self-assembled into thick threads up to several hundred micrometres long on top of the nanowire layer. The nitriding reactions and lack of catalyst suggest new formation mechanisms of the BN nanowires.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of nanotube films can have important applications in building nanoscale functional devices or solving interfacial and heat problems. We report that high-density boron nitride nanotube (BNNT) films with any desired pattern can be grown on complicated surfaces using a boron (B) ink process. The special B ink, a mixture of nanosized B particles, metal nitrate and ethanol, is first painted, sprayed or inkjet printed at the desired location with required pattern, and then the ink layer is annealed in a nitrogen-containing atmosphere to form BNNT film. This is the first method capable of growing BNNTs on complex non-flat surfaces, which greatly broadens the potential application of BNNTs. For example, it is demonstrated here that a BNNT coated steel mesh can separate water and oil on a microlitre scale; a needle given an internal BNNT coating could greatly enhance microfluidic transport; and a coated screw could be used to minimize wear at the interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controlled surface modification of boron nitride nanotubes has been achieved by gentle plasma treatment. Firstly, it was shown that an amorphous surface layer found on the outside of the nanotubes can be removed without damaging the nanotube structure. Secondly, it was shown that an oxygen plasma creates nitrogen vacancies that then allow oxygen atoms to be successfully substituted onto the surface of BNNTs. The percentage of oxygen atoms can be controlled by changing the input plasma energy and by the Ar plasma pre-treatment time. Finally, it has been demonstrated that nitrogen functional groups can be introduced onto the surface of BNNTs using an N2 + H2 plasma. The N2 + H2 plasma also created nitrogen vacancies, some of which led to surface functionalization while some underwent oxygen healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene, multi-wall carbon nanotube (MWCNT) and fine boron nitride (BN) particles were separately applied with a resin onto a cotton fabric, and the effect of the thin composite coatings on the thermal conductive property, air permeability, wettability and color appearance of the cotton fabric was examined. The existence of the fillers within the coating layer increased the thermal conductivity of the coated cotton fabric. At the same coating content, the increase in fabric thermal conductivity was in the order of graphene > BN > MWCNT, ranging from 132 % to 842 % (based on pure cotton fabric). The coating led to 73 %, 69 % and 64 % reduction in air permeability when it respectively contained 50.0 wt% graphene, BN and MWCNTs. The graphene and MWCNT treated fabrics had a black appearance, but the coating had almost no influence on the fabric hydrophilicity. The BN coating made cotton fabric surface hydrophobic, with little change in fabric color.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigation of oxidation resistance of two-dimensional (2D) materials is critical for many of their applications because 2D materials could have higher oxidation kinetics than their bulk counterparts due to predominant surface atoms and structural distortions. In this study, the oxidation behavior of high-quality boron nitride (BN) nanosheets of 1-4 layers thick has been examined by heating in air. Atomic force microscopy and Raman spectroscopy analyses reveal that monolayer BN nanosheets can sustain up to 850 °C, and the starting temperature of oxygen doping/oxidation of BN nanosheets only slightly increases with the increase of nanosheet layer and depends on heating conditions. Elongated etch lines are found on the oxidized monolayer BN nanosheets, suggesting that the BN nanosheets are first cut along the chemisorbed oxygen chains and then the oxidative etching grows perpendicularly to these cut lines. The stronger oxidation resistance of BN nanosheets makes them more preferable for high-temperature applications than graphene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-dimensional (2D) hexagonal boron nitride (BN) nanosheets are excellent dielectric substrate for graphene, molybdenum disulfide, and many other 2D nanomaterial-based electronic and photonic devices. To optimize the performance of these 2D devices, it is essential to understand the dielectric screening properties of BN nanosheets as a function of the thickness. Here, electric force microscopy along with theoretical calculations based on both state-of-the-art first-principles calculations with van der Waals interactions under consideration, and nonlinear Thomas-Fermi theory models are used to investigate the dielectric screening in high-quality BN nanosheets of different thicknesses. It is found that atomically thin BN nanosheets are less effective in electric field screening, but the screening capability of BN shows a relatively weak dependence on the layer thickness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manufacturing of aerogels and membranes from hexagonal boron nitride (h-BN) is much more difficult than from graphene or graphene oxides because of the poor dispersibility of h-BN in water, which limits its exfoliation and preparation of colloidal solutions. Here, a simple, one-step mechano-chemical process to exfoliate and functionalize h-BN into highly water-dispersible, few-layer h-BN containing amino groups is presented. The colloidal solutions of few-layer h-BN can have unprecedentedly high concentrations, up to 30 mg ml(-1), and are stable for up to several months. They can be used to produce ultralight aerogels with a density of 1.4 mg cm(-3), which is ∼1,500 times less than bulk h-BN, and freestanding membranes simply by cryodrying and filtration, respectively. The material shows strong blue light emission under ultraviolet excitation, in both dispersed and dry state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomically thin boron nitride (BN) is an important 2D nanomaterial, with many properties distinct from graphene. In this feature article, these unique properties and associated applications, often not feasible with graphene, are outlined. The article starts with characterization and identification of atomically thin BN. It is followed by demonstrating their strong oxidation resistance at high temperatures and applications in protecting metals from oxidation and corrosion. As flat insulators, BN nanosheets are ideal dielectric substrates for surface enhanced Raman spectroscopy (SERS) and electronic devices based on 2D heterostructures. The light emission of BN nanosheets in the deep ultraviolet (DUV) and ultraviolet (UV) regions is also included for its scientific and technological importance. The last part is dedicated to synthesis, characterization, and optical properties of BN nanoribbons, a special form of nanosheets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomically thin boron nitride (BN) nanosheets have many properties desirable for surface-enhanced Raman spectroscopy (SERS). BN nanosheets have a strong surface adsorption capability toward airborne hydrocarbon and aromatic molecules. For maximized adsorption area and hence SERS sensitivity, atomically thin BN nanosheet-covered gold nanoparticles have been prepared for the first time. When placed on top of metal nanoparticles, atomically thin BN nanosheets closely follow their contours so that the plasmonic hot spots are retained. Electrically insulating BN nanosheets also act as a barrier layer to eliminate metal-induced disturbances in SERS. Moreover, the SERS substrates veiled by BN nanosheets show an outstanding reusability in the long term. As a result, the sensitivity, reproducibility, and reusability of SERS substrates can be greatly improved. We also demonstrate that large BN nanosheets produced by chemical vapor deposition can be used to scale up the proposed SERS substrate for practical applications.