49 resultados para metal ions

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metals are essential for the normal functioning of living organisms. Their uses in biological systems are varied, but are frequently associated with sites of critical protein function, such as zinc finger motifs and electron or oxygen carriers. These functions only require essential metals in minute amounts, hence they are termed trace metals. Other metals are, however, less beneficial, owing to their ability to promote a wide variety of eleterious health effects, including cancer. Metals such as arsenic, for example, an produce a variety of diseases ranging from keratosis of the palms and feet to cancers in multiple target organs. The nature and type of metal-induced pathologies appear to be dependent on the concentration, speciation, and length of exposure. Unfortunately, human contact with metals is an inescapable consequence of human life, with exposures occurring from both occupational and environmental sources. A uniform mechanism of action for all harmful metals is unlikely, if not implausible, given the diverse chemical properties of each metal. In this chapter we will review the mechanisms of carcinogenesis of arsenic, cadmium, chromium, and nickel, the four known carcinogenic metals that are best understood. The key areas of speciation, bioavailability, and mechanisms of action are discussed with particular reference to the role of metals in alteration of gene expression and maintenance of genomic integrity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigates tha application of polymer membranes in industrial wastewater treatment. Several novel membrane systems have been developed. The new systems overcome the problems of low extractant capacity and slow rate of extraction of the traditional membrane system. These new systems offer significant scope for the treatment of industrial wastewater containing heavy metal ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent study indicated that the water-saturated ionic liquid (IL) trihexyl(tetradecyl)phosphonium chloride ([P6,6,6,14][Cl]) provided a viable electrolyte for a Mg-air battery. However, there is limited literature on the properties of IL-water mixtures as battery electrolytes. The physical properties of [P6,6,6,14][Cl] were studied with the addition of both water and metal salts (MgCl2 and LiCl) using conductivity and self-diffusion coefficient measurements. The conductivity of the samples at low water concentrations is surprisingly enhanced by the addition of the metal salt, contrary to lithium IL electrolytes. It was also found that the conductivity of the IL was increased by an order of magnitude by saturation with water. NMR diffusion measurements were used to probe the behaviour of both the cation and the water in the mixtures. It was found that the addition of metal salts to the water-saturated [P6,6,6,14][Cl] did not affect the transport properties of the water or cation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel protein with anti-tumor activities named malanin was isolated and purified from an endemic plant in Yunnan and Guangxi provinces. Effects of copper ion, silver ion and calcium ion on malanin and apo-malanin fluorescence spectra were studied. The results showed that copper ion leads to obvious statistic quenching of malanin and apo-malanin fluorescence. The dissociation constant of them from malanin and apo-malanin were about 2.37×10-4 and 2.66×10-4 mol·L-1, respectively. The silver ion did not have quenching action on malanin fluorescence, but it had statistic quenching effect on apo-malanin fluorescence, and its dissociation constant was 2.37×10-4 mol·L-1. Calcium ion did not have quenching action on malanin and apo-malanin fluorescence. It plays an important role in keeping malanin natural conformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of organic ionic plastic crystals (OIPCs) as a new class of solid electrolyte for energy storage devices such as lithium batteries and, more recently, sodium batteries is attracting increasing attention. Key to this is achieving sufficient target ion transport through the material. This requires fundamental understanding of the structure and dynamics of OIPCs that have been doped with the necessary lithium or sodium salts. Here we report, for the first time, the atomic level structure and transport of both lithium and sodium ions in the plastic crystalline phases of an OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. These molecular dynamics simulations reveal two types of coordination geometries of the alkali metal ion first solvation shells, which cooperate closely with the metal ion hopping motion. The significantly different ion migration rates between two metal ion doped systems could also be related to the differences in solvation structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All rights reserved. A graphene nanodots-encaged porous gold electrode via ion beam sputtering deposition (IBSD) for electrochemical sensing is presented. The electrodes were fabricated using Au target, and a composite target of Al and graphene, which were simultaneously sputtered onto glass substrates by Ar ion beam, followed with hydrochloric acid corrosion. The as-prepared graphene nanodots-encaged porous gold electrodes were then used for the analysis of heavy metal ions, e.g. Cu2+ and Pb2+ by Osteryoung square wave voltammetry (OSWV). These porous electrodes exhibited enhanced detection range for the heavy metal ions due to the entrapped graphene nanodots in 3-D porous structure. In addition, it was also found that when the thickness of porous electrode reached 40 nm the detection sensitivity came into saturation. The linear detection range is 0.009-4 μM for Cu2+ and 0.006-2.5 μM for Pb2+. Good reusability and repeatability were also observed. The formation mechanism and 3-D structure of the porous electrode were also investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectra (XPS). This graphene entrapped 3-D porous structure may envision promising applications in sensing devices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Pieman River catchment has seen continuous mining of economic deposits of gold, silver, lead, copper, zinc and tin since the 1870’s. Tributaries of this river which receive mining effluent, either directly or from acid mine drainage (AMID), have total metal concentrations considerably above background levels and are of regulatory concern. The lower Pieman River is however classified as a State Reserve in which recreational fishing and tourism are the major activities. It is therefore important that water entering the lower Pieman River from upstream hydroelectric impoundments is of high quality. Metals in natural waters exist in a variety of dissolved, colloidal and particulate forms. The bioavailability and hence toxicity of heavy metal pollutants is very dependant on their physico form. Knowledge of the speciation of a metal in natural aquatic environments is therefore necessary for understanding its geochemical behaviour and biological availability. Complexation of metal ions by natural ligands in aquatic systems is believed to play a significant role in controlling their chemical speciation. This study has investigated temporal and spatial variation in complexation of metal ions in the Pieman River. The influence of pH, temperature, organic matter, salinity, ionic strength and time has been investigated in a series of field studies and in laboratory-based experiments which simulated natural and anthropogenic disturbances. Labile metals were measured using two techniques in various freshwater and estuarine environments. Diffusive gradients in thin-films (DGT) allowed in situ measurement of solution speciation whilst differential pulse anodic stripping voltammetry (DPASV) was used to measure labile metal species in water samples collected from the catchment. Organic complexation was found to be a significant regulating mechanism for copper speciation and the copper-binding ligand concentration usually exceeded the total copper concentration in the river water. Complexation was highly dependent on pH and at the river-seawater interface was also regulated by salinity, probably as a result of competitive complexation by major ions in seawater (eg. Ca 2+ ions). Zinc complexation was also evident, however total zinc concentrations in the water column often far exceeded the potential binding capacity of available ligands. In addition to organic complexation, Zn speciation may also be associated with adsorption by flocculated or resuspended colloidal Mn and/or Fe oxyhydroxides. Metal ion complexation and hence speciation was found to be highly variable within the Pieman River catchment. This presents major difficulties for environmental managers, as it is therefore not possible to make catchment-wide assumptions about the bioavailability of these metals. These results emphasise the importance of site-specific sampling protocols and speciation testing, ideally incorporating continuous, in situ monitoring.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10−4 to 10−3 S cm−1 at room temperature. Gelation was found to cause little change in the 7Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Silk is a structural protein fiber that is stable over a wide pH range making it attractive for use in medical and environmental applications. Variation in amino acid composition has the potential for selective binding for ions under varying conditions. Here we report on the metal ion separation potential of Mulberry and Eri silk fibers and powders over a range of pH. Highly sensitive radiotracer probes, 64Cu2+, 109Cd2+, and 57Co2+ were used to study the absorption of their respective stable metal ions Cu2+, Cd2+, and Co2+ into and from the silk sorbents. The total amount of each metal ion absorbed and time taken to reach equilibrium occurred in the following order: Cu2+ > Cd2+ > Co 2+. In all cases the silk powders absorbed metal ions faster than their respective silk fibers. Intensive degumming of the fibers and powders significantly reduced the time to absorb respective metal ions and the time to reach equilibrium was reduced from hours to 5-15 min at pH 8. Once bound, 45-100% of the metal ions were released from the sorbents after exposure to pH 3 buffer for 30 min. The transition metal ion loading capacity for the silk sorbents was considerably higher than that found for commercial ion exchange resins (AG MP-50 and AG 50W-X2) under similar conditions. Interestingly, total Cu2+ bound was found to be higher than theoretically predicted values based on known specific Cu2+ binding sites (AHGGYSGY), suggesting that additional (new) sites for transition metal ion binding sites are present in silk fibers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Amino acids and peptides are known to bind metal ions, in some cases very strongly. There are only a few examples of exploiting this binding in sensors. The review covers the current literature on the interaction of peptides and metals and the electrochemistry of bound metal ions. Peptides may be covalently attached to surfaces. Of particular interest is the attachment to gold via sulfur linkages. Sulfur-containing peptides (eg cysteine) may be adsorbed directly, while any amino group can be covalently attached to a carboxylic acid-terminated thiol. Once at a surface, the possibility for using the attached peptide as a sensor for metal ions becomes realised. Results from the authors’ laboratory and elsewhere have shown the potential for selective monitoring of metal ions at ppt levels. Examples of the use of poly-aspartic acid and the copper binding peptide Gly-Gly-His for detecting copper ions are given.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The recently synthesized ionic liquid (IL) 2-butylthiolonium bis(trifluoromethanesulfonyl)amide, [mimSBu][NTf2], has been used for the extraction of copper(II) from aqueous solution. The pH of the aqueous phase decreases upon addition of [mimSBu]+, which is attributed to partial release of the hydrogen attached to the N(3) nitrogen atom of the imidazolium ring. The presence of sparingly soluble water in [mimSBu][NTf2] also is required in solvent extraction studies to promote the incorporation of Cu(II) into the [mimSBu][NTf2] ionic liquid phase. The labile copper(II) system formed by interacting with both the water and the IL cation component has been characterized by cyclic voltammetry as well as UV−vis, Raman, and 1H, 13C, and 15N NMR spectroscopies. The extraction process does not require the addition of a complexing agent or pH control of the aqueous phase. [mimSBu][NTf2] can be recovered from the labile copper−water−IL interacting system by washing with a strong acid. High selectivity of copper(II) extraction is achieved relative to that of other divalent cobalt(II), iron(II), and nickel(II) transition-metal cations. The course of microextraction of Cu2+ from aqueous media into the [mimSBu][NTf2] IL phase was monitored in situ by cyclic voltammetry using a well-defined process in which specific interaction with copper is believed to switch from the ionic liquid cation component, [mimSBu], to the [NTf2] anion during the course of electrochemical reduction from Cu(II) to Cu(I). The microextraction−voltammetry technique provides a fast and convenient method to determine whether an IL is able to extract electroactive metal ions from an aqueous solution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A few mixed ligand transition metal carbodithioate complexes of the general formula [M(4-MPipzcdt)x(phen)y]Y (M = Mn(II), Co(II), Zn(II); 4-MPipzcdt = 4-methylpiperazine-1-carbodithioate; phen = 1,10-phenanthroline; x = 1 and y = 2 when Y = Cl; x = 2 and y = 1 when Y = nil) were synthesized and screened for their antimicrobial activity against Candida albicans, Escherichia coli, Pseudomonas aeruginosa,Staphylococcus aureus and Enterococcusfaecalis by disk diffusion method. All the complexes exhibited prominent antimicrobial activity against tested pathogenic strains with the MIC values in the range <8-512 μgmL-1. The complexes [Mn(4-MPipzcdt)2(phen)] and [Co(4-MPipzcdt)(phen)2]Cl inhibited the growth of Candida albicans at a concentration as low as 8 µgmL-1.The complexes were also evaluated for their toxicity towards human transformed rhabdomyosarcoma cells (RD cells). Moderate cell viability of the RD cells was exhibited against the metal complexes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this article, we report a facile method for preparing graphene oxide (GO) hybrid materials consisting of copper ions (Cu2+) complexed with GO, where Cu2+ acted as bridges connecting GO sheets. The method of film formation is based on cross-linking GO using Cu2+ followed by filtration onto nanoporous supports. This binding can be rationalized due to the chemical interaction between the functional groups on GO and the metal ion. We observed that there was a decrease in charge transfer resistance through electrochemical study. It suggests that the presence of metal ions in GO films could introduce new energy levels along the electron transport pathway and open up possible conduction channels. We also found that the hybrid graphene film assembled with Cu2+ dramatically decreases resistance through flash light reduction.