43 resultados para hydrophilic

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A poly(ε-caprolactone) (PCL) based biodegradable polymer containing robust, amine-reactive side chains has been successfully synthesized. The specific reactivity of the side chains allows for the coupling of unmodified amine-containing molecules such as poly(l-lysine) (PLL) to PCL to occur in the presence of other unprotected functional groups. The reactivity of this polymer has been demonstrated through successful coupling of both benzylamine (a model compound) and PLL. This novel amine-reactive polymer could have numerous applications in biomedical fields such as tissue engineering and drug delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inclusion of a water-soluble polymer, poly(vinyl pyrrolidone) (PVP), into a surface active film composition before application to the water surface leads to the formation of a dynamic duolayer; a novel surface film system. This duolayer shows improved surface viscosity over the monolayer compound alone, while the addition of polymer maintains other film properties such as evaporation control and equilibrium spreading pressure. Brewster Angle Microscopy shows that the duolayer film undergoes a different formation mechanism upon film compression, and the resultant surface pressure/area isotherm is different at lower surface pressures indicating the PVP is present on the water surface at these pressures and squeezed out to the water subphase at higher pressures. The addition of water-soluble polymers to form a dynamic duolayer provides a unique way to produce defect-free and tightly packed films while polymer is associated with the film. This finding provides new knowledge for the design of surface films with improved properties with potential applications in many areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ethylene terephthalate) (PET) fabric with highly and durable hydrophilic surface was fabricated using microwave-assisted glycolysis. Sodium hydroxide (NaOH) as a catalyst was proven to be suitable for PET glycolysis under assistance of microwave. The modified PET fabric (0.5% NaOH, irradiation 120 s) showed high surface hydrophilicity with a contact angle of 17.4 ° and a wicking length of 19.36 mm. The exposure of the carboxyl- and hydroxyl-end groups on the surface of PET and the introduction of etches were confirmed by Methylene Blue staining and field emission scanning electron microscopy (FESEM), receptively. Although the strength of PET fabric decreased after modification, it was still high enough for textile applications. The thermal properties of the modified PET fabrics were well maintained. The high hydrophilicity and its original properties of PET could be controlled by changing the irradiation time from 60 s to 120 s and adjusting the content of sodium hydroxide from 0.2% to 0.5%. These results suggest microwave-assisted glycolysis with sodium hydroxide is an effective method for PET hydrophilic finishing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A woven pure wool fabric has been exposed to atmospheric pressure plasma for 30 seconds using a pilot-scale. commercial machine. X-ray photoelectron spectral data revealed large increases in oxygen and nitrogen. and a large reduction in carbon. on the surfaces of the plasma-treated fibres. A CIN ratio of 3.55 for plasma-treated wool was consistent with removal of the covalently-bound fatty acids from the surface of the cuticle cells. resulting in exposure of the proteinaceous epicuticle. Dye staining experiments revealed that the back of the fabric had received the same, uniform level of treatment as the face, despite the fact that only the face had been directly exposed to the plasma. Dyes (1 % oww) were applied to fabric at 50°C (liquor ratio =40: 1) and pH values from 3 to 6. The relatively low temperature of 50°C was selected in order to accentuate the effects of plasma on the rate of dye uptake. Under these conditions, dye was adsOibed onto the fibre surfaces, with very little penetration into the fibres. Effects of the plasma treatment on the rate of dyes adsorption were dyespecific. No significant effects of plasma on the rate of dye uptake were observed with relatively hydrophobic dyes, but hydrophilic dyes were adsorbed more rapidly by the plasmatreated fabric. It would appear that for more hydrophobic dyes, hydrophobic effects are more important for the adsorption of dyes by the plasma-treated fibres, even though these fibres were quite hydrophilic. On the other hand. it is concluded that for more hydrophilic dyes, electrostatic effects are more important for adsorption by the plasma-treated fibre.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wool fabric has been subjected to an atmospheric-pressure treatment with a helium plasma for 30 seconds. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed removal of the covalently-bound fatty acid layer (F-layer) from the surface of the wool fibers, resulting in exposure of the underlying, hydrophilic protein material. Dye uptake experiments were carried out at 50 ºC to evaluate the effects of plasma on the rate of dye uptake by the fiber surface, as well as give an indication of the adsorption characteristics in the early stages of a typical dyeing cycle. The dyes used were typical, sulfonated wool dyes with a range of hydrophobic characteristics, as determined by their partitioning behavior between water and n-butanol. No significant effects of plasma on the rate of dye adsorption were observed with relatively hydrophobic dyes. In contrast, the relatively hydrophilic dyes were adsorbed more rapidly (and uniformly) by the plasma-treated fabric. It was concluded that adsorption of hydrophobic dyes on plasma-treated wool was influenced by hydrophobic interactions, whereas electrostatic effects predominated for dyes of more hydrophilic character. On heating the dyebath to 90 ºC in order to achieve fiber penetration, no significant effect of the plasma treatment on the extent of uptake or levelness of a relatively hydrophilic dye was observed as equilibrium conditions were approached.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Artificial superhydrophobic surfaces with a hierarchical topography were fabricated by using layer-by-layer assembly of polyelectrolytes and silica nanoparticles on microsphere-patterned polyimide precursor substrates followed with thermal and fluoroalkylsilane treatment. In this special hierarchical topography, micrometer-scale structures were provided by replica molding of polyamic acid using two-dimensional arrays of polystyrene latex spheres as templates, and nanosized silica particles were then assembled on these microspheres to construct finer structures at the nanoscale. Heat treatment was conducted to induce chemical cross-linking between polyelectrolytes and simultaneously convert polyamic acid to polyimide. After surface modification with fluoroalkylsilane, the as-prepared highly hydrophilic surface was endowed with superhydrophobicity due to the bioinspired combination of low surface energy materials and hierarchical surface structures. A superhydrophobic surface with a static water contact angle of 160 degrees and sliding angle of less than 10 degrees was obtained. Notably, the polyimide microspheres were integrated with the substrate and were mechanically stable. In addition, the chemical and mechanical stability of the polyelectrolyte/silica nanoparticle multilayers could be increased by heat-induced cross-linking between polyelectrolytes to form nylon-like films, as well as the formation of interfacial chemical bonds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wool powders with various particle sizes have been produced using different milling techniques. Scanning electron microscopy (SEM) showed gradual breakdown of the fibre as it was progressively converted into powder form. Chlorination enhanced the effectiveness of subsequent air-jet milling. X-ray photoelectron spectroscopy (XPS) revealed an increase in the surface concentrations of oxygen and nitrogen, and a decrease in carbon and sulphur on conversion of the fibres into powders, as the cortex became exposed on the powder surface. An increased surface concentration of cysteic acid was observed for the chlorinated powder. Rapid uptake of dye by wool powders was observed in situations where there was virtually no uptake by the original fibre. Hydrophobic dyes were more readily sorbed than were hydrophilic dyes. The chlorination treatment led to a decrease in the sorption of acid dyes. Confocal microscopy, used in conjunction with a fluorescent stain, showed that chemicals were able to penetrate wool particles, even at room temperature. The rate and extent of uptake of dye by the finer powders were comparable to that obtained with activated charcoal, even though the surface area of the charcoal was 100 times greater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric pressure plasma with a relatively short exposure time was sufficient to modify the wool surface. The ageing studies showed the hydrophobic recovery of fibre surface took place at the early stages after plasma treatment. While plasma improved wool shrink-resistance, improvement in dyeability depends on the hydrophilic-hydrophobic nature of dyestuff.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrated ionic liquids (ILs) were prepared by adding appropriate amounts of water to hydrophilic ILs. Some hydrated ILs show excellent solubilizing ability for proteins, keeping the basic properties of ILs. The solubility of cytochrome c (cyt c) depended on the structure of the component ions. When component anions have oxo acid residues, the resulting hydrated ILs solubilize cyt c quite well. In such hydrated ILs, the structure and activity of cyt c is influenced by the kosmotropicity of the component ions. We synthesized ILs from various ions having different kosmotropicity, including dihydrogen phosphate (dhp), dibutylphosphate, acetate, lactate, and methanesulfonate as anions. The activity of the dissolved cyt c depends on the permutations of kosmotropicity of the component ions. cyt c shows no structural change and retains its activity when dissolved in the hydrated choline dhp, which is an excellent combination of chaotropic cation and kosmotropic anion. Furthermore, cyt c dissolved in the hydrated choline dhp remained in a native state and was active after 18 months of storage at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High drug loading (DL) carrier is an effective way to cure the cancerous cells. High drug loading is also one of the key issues in the drug delivery research, especially the colonic drug delivery system by oral administration. The times of drug intake could be remarkably reduced if high drug loading carriers are administered. At the same time, the related formulation materials could be effectively utilized. One major obstacle with the preparation of this system is the difficulty to encapsulate the hydrophilic drug into hydrophobic encapsulation polymer. A design of high drug loading delivery system with biodegradable, biocompatible materials and optimization of the fabrication process is a potential solution to solve the problem. So in this research, 5-Fluorouracil (5-FU) loaded Poly (lactide-co-glycolide) (PLGA) nanoparticles were prepared by double emulsion and solvent evaporation method. Several fabrication parameters including theoretical drug loading, volume ratio of outer water phase to the first emulsion, pH value of outer aqueous phase and emulsifier PVA concentration were optimized to get a high drug loading nanoparticles. The result shows that with the increase of theoretical drug loading, the actual drug loading increased gradually. When adjusted the pH value of outer aqueous phase to the isoelectric point (8.02) of 5-Fluorouracil, the drug loading exhibited a higher one compared to other pH value solution. Relative higher volume ratio of outer water phase to the first emulsion was also beneficial for the enhancement of drug loading. But the nanoparticles size increased simultaneously due to the lower shearing force. When increased the PVA concentration, the drug loading showed an increase first and following a drop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the solubility of hen lysozyme (HEWL) in aqueous ethylammonium nitrate (EAN) as a function of water content. We find the solubility behavior to be complex, exhibiting both a maximum (400 mg/mL) at very high EAN content) and a minimum at intermediate EAN content. We exploit this solubility profile in a novel approach to generating crystals of hydrophilic proteins, based on rehydration of a high concentration protein solution. We describe the production of crystals of X-ray diffraction quality. Two related ionic liquid solvent systems, with the same solubility profiles but different effective pH characteristics, are identified for future evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quality of drinking water generally deteriorates when it is delivered through a distribution system due to the decay of disinfectant, which subsequently allows the re-growth of microorganisms in the distribution system in addition to the formation of trihalomethane (THM). Therefore, a model which describes the changes that occur in the water quality in the distribution system is needed to determine whether to enhance the treatment processes or to improve the distribution system so that microbiological criteria are met. In this paper the chlorine decay kinetics and THM formation in treated water is modeled considering the reaction of chlorine with fast and slow reacting organic and nitrogenous compounds which are present in that water. The treated water was also passed through three types of resins to fractionate very hydrophobic acids (VHA), slightly hydrophobic acids (SHA), hydrophilic charged (CHA) and hydrophilic neutral (NEU) compounds which are present in the water. Chlorine decay tests were conducted on the effluents emerging from the resins to evaluate the chlorine demand and THM formation potential of those organic fractions. The model shows that the CHA presented in the waters has a very high THM formation potential (around 62% of the THM produced). VHA, NEU and CHA contributed to chlorine demand in the water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural organic matter (NOM) in water contains organic compounds that are both hydrophobic and hydrophilic with a wide range of molecular weights. It is composed of non-homogeneous organic compounds such as humic substances, amino acids, sugars, aliphatic and aromatic acids, and other chemical synthetic organic matters. NOM in water is a major concern not only because of its contribution to the formation of disinfection by-products (DBPs) and taste and odor, but also its influence on the demand for coagulants and disinfectants, the removal efficiency of water treatment processes, etc. This research aims at identifying the influence of NOM in coagulation and flocculation processes in order to optimize the coagulation and flocculation conditions. In this study, pretreated pond water was used as the source water. It was observed from the experimental results that: (1) The optimum pH for coagulation to remove NOM is around 7. (2) The optimum alum dose at this pH can vary from 125-1,225 mgl-1 when the TOC is increased from 4 to 25 mgl-1. (3) The presence of secondary compounds such as Ca2+, Mg2+ divalent cations had no significant effect on the removal of organic matter. (4) The presence of clay increased the organic removal by 15%. (5) The organic compound with higher molecular weight has higher removal affinity in coagulation process. (6) Floc size and settling velocity of floc and sludge production all increased with the increase in NOM concentration. From the results of Capillary Suction Time (CST) tests, the floc formed with lower TOC readily released the water to make the dewatering process easier. (7) The organic removal efficiency was significantly different for natural water containing non-homogeneous organic compounds compared to the synthetic water containing humic acid only (homogeneous organic matter). For example, the NOM removal efficiency was 80% for the synthetic water containing humic acid with TOC of 7 mgl-1 at pH 7; but the NOM removal for the pretreated pond water was 60%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Class I fungal hydrophobins form amphipathic monolayers composed of amyloid rodlets. This is a remarkable case of functional amyloid formation in that a hydrophobic:hydrophilic interface is required to trigger the self-assembly of the proteins. The mechanism of rodlet formation and the role of the interface in this process have not been well understood. Here, we have studied the effect of a range of additives, including ionic liquids, alcohols, and detergents, on rodlet formation by two class I hydrophobins, EAS and DewA. Although the conformation of the hydrophobins in these different solutions is not altered, we observe that the rate of rodlet formation is slowed as the surface tension of the solution is decreased, regardless of the nature of the additive. These results suggest that interface properties are of critical importance for the recruitment, alignment, and structural rearrangement of the amphipathic hydrophobin monomers. This work gives insight into the forces that drive macromolecular assembly of this unique family of proteins and allows us to propose a three-stage model for the interface-driven formation of rodlets.