7 resultados para hydrodynamic analysis

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a three-dimensional (3D) computational fluid dynamic simulation of a biomimetic robot fish. Fluent and user-defined function (UDF) is used to define the movement of the robot fish and the Dynamic Mesh is used to mimic the fish swimming in water. Hydrodynamic analysis is done in this paper too. The aim of this study is to get comparative data about hydrodynamic properties of those guidelines to improve the design, remote control and flexibility of the underwater robot fish.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated the feasibility of ranching the abalone Haliotis rubra (Leach) and Haliotis laevigata (Donovan) on concrete artificial reefs at a site chosen by industry investors on silty bottom off Altona Beach, Port Phillip Bay, Victoria, Australia. The study started from the premise that artificial reef deployment combined with abalone stock enhancement may achieve the dual purpose of habitat and stock improvement. It evaluated the hydrodynamics of the site in relation to artificial reef structural stability and drift algal transport, the development and ecology of the artificial reef assemblage, and abalone enhancement by seeding the reefs with hatchery juvenile abalone and transplanting adult broodstock abalone. Despite a scarcity of reports on culturing abalone on artificial reef, a literature review examined broadly the functions of artificial reefs, particularly in the context of abalone enhancement, and the relationship between artificial reefs, hydrodynamics and ecology. The major finding was that the success of artificial reef projects is highly dependent on the environment of the chosen site, and that preliminary studies are essential to predict their likely success. This consideration alone provided strong justification to undertake this study. The topography at the Altona site was generally flat, with natural patches of low basalt boulder reef, offering low habitat complexity, yet supporting a diverse range of flora and fauna, including a low-density wild stock of H. rubra. Water depth was a mean of 3.3 m at low tide and 4.4 m at high tide. A single, uncomplicated, concrete artificial reef of H-shape design, was tested as abalone habitat. The hydrodynamic analysis confirmed previous studies of Port Phillip Bay, with mild current speeds of mean 0.045 m.s-1, and maximum-modelled wave height (H1/3) of 1.21 m and period (T1/3) of 4.51 sec. Water temperature ranged from 9.9şC during July to 23.8şC during January, with salinity averaging of 35.5 ppt. The site had a low probability of receiving drift algae, necessary as a food source for abalone, because of its geographic location, potentially affecting ranch productivity. Ecological monitoring of the three-year old artificial reef shows complex changes in the flora and fauna over time, particularly in respect of the sessile fauna. Key differences between the artificial reef and a nearby natural reef community were: lower cover of corallines and late colonisers, such as sponges. High levels of sedimentation were recorded at the Altona site. Hatchery juvenile H. laevigata, with mean survival of 15% after two years and a mean annual growth rate of 39 mm, showed the most promise for outplanting. In comparison, for hatchery juvenile H. rubra, mean survival was 9% after three years and mean annual growth rate was 22 mm. No natural recruitment of H. laevigata was recorded on artificial reef despite transplants of adult broodstock on the reefs. Natural recruitment of H. rubra was also low and insufficient to reliably contribute to abalone ranch stock. Having examined the hydrodynamic, ecological and enhancement attributes of the Altona site, the study concluded that the site was marginally viable for abalone ranching, and that an alternative site near Werribee, 20 km further southwest, had superior attributes for growth and survival of abalone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis developed a biomimetic robot fish and built a novel haptic robot fish system based on the kinematic modelling and three-dimentional computational fluid dynamic (CFD) hydrodynamic analysis. The most important contribution is the successful CFD simulation of the robot fish, supporting users in understanding the hydrodynamic properties around it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract A detailed description of possibilities given by the developed Cellular Automata—Finite Element (CAFE) multi scale model for prediction of the initiation and propagation of micro shear bands and shear bands in metallic materials subjected to plastic deformation is presented in the work. Particular emphasis in defining the criterion for initiation of micro shear and shear bands, as well as in defining the transition rules for the cellular automata, is put on accounting for the physical aspects of these phenomena occurring in two different scales in the material. The proposed approach led to the creation of the real multi scale model of strain localization phenomena. This model predicts material behavior in various thermo-mechanical processes. Selected examples of applications of the developed model to simulations of metal forming processes, which involve strain localization, are presented in the work. An approach based on the Smoothed Particle Hydrodynamic, which allows to overcome difficulties with remeshing in the traditional CAFE method, is a subject of this work as well. In the developed model remeshing becomes possible and difficulties limiting application of the CAFE method to simple deformation processes are solved. Obtained results of numerical simulaA detailed description of possibilities given by the developed Cellular Automata—Finite Element (CAFE) multi scale model for prediction of the initiation and propagation of micro shear bands and shear bands in metallic materials subjected to plastic deformation is presented in the work. Particular emphasis in defining the criterion for initiation of micro shear and shear bands, as well as in defining the transition rules for the cellular automata, is put on accounting for the physical aspects of these phenomena occurring in two different scales in the material. The proposed approach led to the creation of the real multi scale model of strain localization phenomena. This model predicts material behavior in various thermo-mechanical processes. Selected examples of applications of the developed model to simulations of metal forming processes, which involve strain localization, are presented in the work. An approach based on the Smoothed Particle Hydrodynamic, which allows to overcome difficulties with remeshing in the traditional CAFE method, is a subject of this work as well. In the developed model remeshing becomes possible and difficulties limiting application of the CAFE method to simple deformation processes are solved. Obtained results of numerical simulations are compared with the experimental results of cold rolling process to show good predicative capabilities of the developed model.tions are compared with the experimental results of cold rolling process to show good predicative capabilities of the developed model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate measurements of the shape of a mercury drop separated from a smooth flat solid surface by a thin aqueous film reported recently by Connor and Horn (Faraday Discuss. 2003, 123, 193-206) have been analyzed to calculate the excess pressure in the film. The analysis is based on calculating the local curvature of the mercury/aqueous interface, and relating it via the Young-Laplace equation to the pressure drop across the interface, which is the difference between the aqueous film pressure and the known internal pressure of the mercury drop. For drop shapes measured under quiescent conditions, the only contribution to film pressure is the disjoining pressure arising from double-layer forces acting between the mercury and mica surfaces. Under dynamic conditions, hydrodynamic pressure is also present, and this is calculated by subtracting the disjoining pressure from the total film pressure. The data, which were measured to investigate the thin film drainage during approach of a fluid drop to a solid wall, show a classical dimpling of the mercury drop when it approaches the mica surface. Four data sets are available, corresponding to different magnitudes and signs of disjoining pressure, obtained by controlling the surface potential of the mercury. The analysis shows that total film pressure does not vary greatly during the evolution of the dimple formed during the thin film drainage process, nor between the different data sets. The hydrodynamic pressure appears to adjust to the different disjoining pressures in such a way that the total film pressure is maintained approximately constant within the dimpled region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an experiment designed to measure surface and hydrodynamic forces between a mercury drop and a flat mica surface immersed in an aqueous medium. An optical interference technique allows measurement of the shape of the mercury drop as well as its distance from the mica, for various conditions of applied potential, applied pressure, and solution conditions. This enables a detailed exploration of the surface forces, particularly double-layer forces, between mercury and mica. A theoretical analysis of drop shape under the influence of surface forces shows that deformation of the drop is a sensitive indicator of the forces, as well as being a very important factor in establishing the overall interaction between the solid and the fluid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the magneto-hydrodynamic forces generated due to the external magnetic field and current density distribution within the cell (current in cell linings) is important in the optimization of cell dynamics. It is well documented that these factors play a crucial role in establishing the metal-pad stability of the cell. Conventional cells use the cathode-collector-bar assembly to carry the current through molten aluminium, the cathode and the steel collector-bar to nearest external bus. The electrical conductivity of the steel is so poor relative to the molten aluminium that the outer third of the collector bar carries the maximum load, which in turn increases the horizontal components of the current within the cell. Previous studies have modelled improvement in the cell instability through external magnetic compensation by redistributing current in the cathode busbar. Very little to date has been published on work to improve the current distribution within the cell. In this work, the current distribution in an aluminium electrolysis cell with copper collector-bar was predicted using finite element modelling. A 2D cross-section of a commercial cell was used under steady conditions of electrical fields in anode, electrolyte, molten aluminium and copper cathode-assembly. Different shapes and sizes of the cathode assembly are also considered to optimise the distribution of current throughout the cathode lining. The findings indicated that the copper-bar of similar size to steel could save voltage up to 150 mV. There is a reduction of more than 70% in peak current density value due to the copper inserts. The predicted trends of current distribution show a good agreement with previously published data.