25 resultados para human in vitro myogenesis

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is currently little understanding of the physicochemical properties in the human gastrointestinal tract of Australian sweet lupin (Lupinus angustifolius) kernel fibre (LKF), a novel food ingredient with potential for the fibre enrichment of foods such as baked goods. Since physicochemical properties of dietary fibres have been related to beneficial physiological effects in vitro, this study compared water-binding capacity and viscosity of LKF with that of other fibres currently used for fibre-enrichment of baked goods, under in vitro conditions simulating the human upper gastrointestinal tract. At between 8.47 and 11.07g water/g dry solids, LKF exhibited water-binding capacities that were significantly higher (P<0.05) than soy fibre, pea hull fibre, cellulose and wheat fibre at all of the simulated gastrointestinal stages examined. Similarly, viscosity of LKF was significantly higher (P<0.05) than that of the other fibres at all simulated gastrointestinal stages. The relatively high water-binding capacity and viscosity of LKF identified in this study suggests that this novel fibre ingredient may elicit different and possibly more beneficial physiological effects in the upper human gastrointestinal tract than the conventional fibre ingredients currently used in fibre-enriched baked goods manufacture. We are now performing human studies to investigate the effect of LKF in the diet on health-related gastrointestinal events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silk fibroin protein is biodegradable and biocompatible, exhibiting excellent mechanical properties for various biomedical applications. However, porous three-dimensional (3-D) silk fibroin scaffolds, or silk sponges, usually fall short in matching the initial mechanical requirements for bone tissue engineering. In the present study, silk sponge matrices were reinforced with silk microparticles to generate protein-protein composite scaffolds with desirable mechanical properties for in vitro osteogenic tissue formation. It was found that increasing the silk microparticle loading led to a substantial increase in the scaffold compressive modulus from 0.3 MPa (non-reinforced) to 1.9 MPa for 1:2 (matrix:particle) reinforcement loading by dry mass. Biochemical, gene expression, and histological assays were employed to study the possible effects of increasing composite scaffold stiffness, due to microparticle reinforcement, on in vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs). Increasing silk microparticle loading increased the osteogenic capability of hMSCs in the presence of bone morphogenic protein-2 (BMP-2) and other osteogenic factors in static culture for up to 6 weeks. The calcium adsorption increased dramatically with increasing loading, as observed from biochemical assays, histological staining, and microcomputer tomography (μCT) analysis. Specifically, calcium content in the scaffolds increased by 0.57, 0.71, and 1.27 mg (per μg of DNA) from 3 to 6 weeks for matrix to particle dry mass loading ratios of 1:0, 1:1, and 1:2, respectively. In addition, μCT imaging revealed that at 6 weeks, bone volume fraction increased from 0.78% for non-reinforced to 7.1% and 6.7% for 1:1 and 1:2 loading, respectively. Our results support the hypothesis that scaffold stiffness may strongly influence the 3-D in vitro differentiation capabilities of hMSCs, providing a means to improve osteogenic outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, titanium (Ti) and titanium-zirconium (TiZr) alloy samples fabricated through powder metallurgy were surface modified by alkali-heat treatment and calcium (Ca)-ion-deposition. The alteration of the surface morphology and the chemistry of the Ti and TiZr after surface modification were examined. The bioactivity of the Ti and TiZr alloys after the surface modification was demonstrated. Subsequently, the cytocompatibility of the surface modified Ti and TiZr was evaluated via in vitro cell culture using human osteoblast-like cells (SaOS2). The cellular attachment, adhesion and proliferation after cell culture for 14 days were characterized by scanning electron microscopy (SEM) and MTT assay. The relationship between surface morphology and chemical composition of the surface modified Ti and TiZr and cellular responses was investigated. Results indicated that the surface-modified Ti and TiZr alloys exhibited excellent in vitro cytocompatibility together with satisfactory bioactivity. Since osteoblast adhesion and proliferation are essential prerequisites for a successful implant in vivo, these results provide evidence that Ti and TiZr alloys after appropriate surface modification are promising biomaterials for hard tissue replacement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four new triphenyltin(IV) complexes of composition Ph3SnLH (where LH = 2-/4-[(E)-2-(aryl)-1-diazenyl]benzoate) (1–4) were synthesized and characterized by spectroscopic (1H, 13C and 119Sn NMR, IR, 119Sn Mössbauer) techniques in combination with elemental analysis. The 119Sn NMR spectroscopic data indicate a tetrahedral coordination geometry in non-coordinating solvents. The crystal structures of three complexes, Ph3SnL1H (1), Ph3SnL3H (3), Ph3SnL4H (4), were determined. All display an essentially tetrahedral geometry with angles ranging from 93.50(8) to 124.5(2)°; 119Sn Mössbauer spectral data support this assignment. The cytotoxicity studies were performed with complexes 1–4, along with a previously reported complex (5) in vitro across a panel of human tumor cell lines viz., A498, EVSA-T, H226, IGROV, M19 MEL, MCF-7 and WIDR. The screening results were compared with the results from other related triphenyltin(IV) complexes (6–7) and tributyltin(IV) complexes (8–11) having 2-/4-[(E)-2-(aryl)-1-diazenyl]benzoates framework. In general, the complexes exhibit stronger cytotoxic activity. The results obtained for 1–3 are also comparable to those of its o-analogs i.e. 4–7, except 5, but the advantage is the former set of complexes demonstrated two folds more cytotoxic activity for the cell line MCF-7 with ID50 values in the range 41–53 ng/ml. Undoubtedly, the cytotoxic results of complexes 1–3 are far superior to CDDP, 5-FU and ETO, and related tributyltin(IV) complexes 8–11. The quantitative structure-activity relationship (QSAR) studies for the cytotoxicity of triphenyltin(IV) complexes 1–7 and tributyltin(IV) complexes 8–11 is also discussed against a panel of human tumor cell lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of human immunodeficiency virus type 1 (HIV-1) infection on the ability of human monocytes/macrophages to phagocytose Mycobacterium avium complex (MAC) in vivo and in vitro and the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on this function were investigated. By use of a flow cytometric assay to quantify phagocytosis, HIV-1 infection was found to impair the ability of monocyte-derived macrophages to phagocytose MAC in vitro, whereas GM-CSF significantly improved this defect. Phagocytosis was not altered by exposure to a mutant form of GM-CSF (E21R) binding only to the α chain of the GM-CSF receptor, suggesting that signaling by GM-CSF that leads to augmentation of phagocytosis is via the β chain of the receptor. In a patient with AIDS and disseminated multidrug-resistant MAC infection, GM-CSF treatment improved phagocytosis of MAC by peripheral blood monocytes and reduced bacteremia. These results imply that GM-CSF therapy may be useful in restoring antimycobacterial function by human monocytes/macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract
Silver nanoparticles (AgNPs) have attracted much attention as antimicrobial agents and have demonstrated efficient inhibitory activity against various viruses, including human immunodeficiency virus, hepatitis B virus, and Tacaribe virus. In this study, we investigated if AgNPs could have antiviral and preventive effects in A/Human/Hubei/3/2005 (H3N2) influenza virus infection. Madin-Darby canine kidney cells infected with AgNP-treated H3N2 influenza virus showed better viability (P,0.05 versus influenza virus control) and no obvious cytopathic effects compared with an influenza virus control group and a group treated with the solvent used for preparation of the AgNPs. Hemagglutination assay indicated that AgNPs could significantly inhibit growth of the influenza virus in Madin-Darby canine kidney cells (P,0.01 versus the influenza virus control). AgNPs significantly reduced cell apoptosis induced by H3N2 influenza virus at three different treatment pathways (P,0.05 versus influenza virus control). H3N2 influenza viruses treated with AgNPs were analyzed by transmission electron microscopy and found to interact with each other, resulting in destruction of morphologic viral structures in a time-dependent manner in a time range of 30 minutes to 2 hours. In addition, intranasal AgNP administration in mice significantly enhanced survival after infection with the H3N2 influenza virus. Mice treated with AgNPs showed lower lung viral titer levels and minor pathologic lesions in lung tissue, and had a marked survival benefit during secondary intranasal passage in vivo. These results provide evidence that AgNPs have beneficial effects in preventing H3N2 influenza virus infection both in vitro and in vivo, and demonstrate that AgNPs can be used as potential therapeutics for inhibiting outbreaks of influenza.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the role of bone sialoprotein (BSP), a secreted glycoprotein normally found in bone, in breast cancer progression. To explore functions for BSP in human breast cancer invasion and metastasis, the full-length BSP cDNA was transfected into the MDA-MB-231-BAG human breast cancer cell line under the control of the CMV promoter. Clones expressing BSP and vector control clones were isolated. BSP producing clones showed increased monolayer wound healing, a faster rate of stellate outgrowth in Matrigel and increased rate of invasion into a collagen matrix when compared to control clones. Clones were also examined in models of breast cancer growth and metastasis in vivo. BSP transfected clones showed an increased rate of primary tumor growth following mammary fat pad injection of nude mice. BSP transfected clones and vector control clones metastasized to soft organs and bone at a similar rate after intra-cardiac injection as determined by real-time PCR and X-ray analysis. Although these organs were targets for both BSP transfected and non-transfected cells, the size of the metastatic lesion was shown to be significantly larger for BSP expressing clones. This was determined by real-time PCR analysis for soft organs and by X-ray analysis of bone lesions. For bone this was confirmed by intra-tibial injections of cells in nude mice. We conclude that BSP acts to drive primary and secondary tumor growth of breast cancers in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bovine milk contains biologically active peptides that may modulate growth and development within humans. In this study, targeted bovine-derived proteins were evaluated for their effects on signal transducer and activator of transcription-3 (STAT3) phosphorylation in human skeletal muscle cells. Following an acute exposure, bovine-derived acidic fibroblast growth factor-1 (FGF) and leukemia inhibitory factor (LIF) activated STAT3 in differentiating myotubes. Chronic exposure to FGF and LIF during the proliferative phase reduced myoblast proliferation and elevated MyoD and creatine kinase (CKM) mRNA expression without altering apoptotic genes. In mature myotubes, neither FGF nor LIF elicited any action. Together, these data indicate that a reduction in proliferation in the presence of bovine-derived FGF or LIF may stimulate early maturation of myoblasts.