60 resultados para haptic interface

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction with virtual or teleoperated environments requires contact with objects on a multipoint level. We describe the design of a pinch--grasp hand interface device for use as a grasping mechanism to complement haptic interfaces. To preserve a suitable level of transparency for human--computer interaction, this novel interface is designed for high-resolution contact forces, while centered around a lightweight structure. This functionality renders the device scalable and adaptable to a wide range of haptic interface structures and force level requirements. We present an optimal configuration for a pinch--grasp interface, which produces bidirectional forces to an operator's fingers and a rotational force to the wrist through a cable drive system. The device is characterized for use on a commercial haptic interface through demonstration of sustained peak performance and also workspace utilization. The dynamic performance of the pinch--grasp interface is experimentally determined, and the frequency response is identified to illustrate its contact force resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a low-cost haptic interface providing four different kinematic configurations. The different configurations are achieved using two Phantom Omni haptic devices combined with a series of clip-on attachments. Aside from the flexibility to easily reconfigure the interface, three of the four configurations provide functionality which is either not readily available or is cost prohibitive for many applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite recent advances in artificial intelligence and autonomous robotics, teleoperation can provide distinct benefits in applications requiring real-time human judgement and intuition. However, as robotic systems are increasingly becoming sophisticated and are performing more complex tasks, realizing these benefits requires new approaches to teleoperation. This paper introduces a novel haptic mediator interface for teleoperating mobile robotic platforms that have a variety of manipulators and functions. Identical master-slave bilateral teleoperation of the robotic manipulators is achieved by representing them in virtual reality and by allowing the operator to interact with them using a multipoint haptic device. The operator is also able to command motions to the mobile platform by using a novel haptic interaction metaphor rather than a separate dedicated input device. The presented interaction techniques enable the operator to perform a wide range of control functions and achieve functionality similar to that of conventional teleoperation schemes that use a single haptic interface. The mediator interface is presented, and important considerations such as workspace mapping and scaling are discussed. © 2015 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents an investigation into the workspace constraints observed through the use of multiple single point haptic interfaces, which lead to the design of a novel grasping device that improves upon current commercial haptic interfaces. The presented device is desktop based, and has been designed to maximise the haptic workspace while offering the ability to grasp and manipulate virtual objects, which is a function that current commercial interfaces are limited in providing. The performance of the commercial haptic interface in producing sustained effective operation and increased workspace with the attached haptic gripper is evaluated, and the improvement of both has been determined.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Haptic technology provides the ability for a system to recreate the sense of touch to a human operator, and as such offers wide reaching advantages. The ability to interact with the human's tactual modality introduces haptic human-machine interaction to replace or augment existing mediums such as visual and audible information. A distinct advantage of haptic human-machine interaction is the intrinsic bilateral nature, where information can be communicated in both directions simultaneously. This paper investigates the bilateral nature of the haptic interface in controlling the motion of a remote (or virtual) vehicle and presents the ability to provide an additional dimension of haptic information to the user over existing approaches [1-4]. The 3D virtual haptic cone offers the ability to not only provide the user with relevant haptic augmentation pertaining to the task at hand, as do existing approaches, however, to also simultaneously provide an intuitive indication of the current velocities being commanded.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introducing haptic interface to conduct microrobotic intracellular injection has many beneficial implications. In particular, the haptic device provides force feedback to the bio-operator's hand. This paper introduces a 3D particle-based model to simulate the deformation of the cell membrane and corresponding cellular forces during microrobotic cell injection. The model is based on the kinematic and dynamic of spring – damper multi particle joints considering visco-elastic fluidic properties. It simulates the indentation force feedback as well as cell visual deformation during the microinjection. The model is verified using experimental data of zebrafish embryo microinjection. The results demonstrate that the developed cell model is capable of estimating zebrafish embryo deformation and force feedback accurately.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the design of a virtual reality (VR) training system for micro-robotic cell injection. A brief explanation of cell injection and the challenges associated with the procedure are first presented. This is followed by discussion of the skills required by the bio-operator to achieve successful injection, such as accuracy, trajectory and applied force. The design of the VR system which includes the visual display, input controllers, mapping strategies, haptic guidance and output data is then discussed. Initial evaluation of the VR system is presented including analysis and discussion based on conducted user evaluations. Finally, given the findings of the initial evaluation, this paper concludes that an effective haptically-enabled virtual cell injection training system is feasible, and recommendations for improvement and future work are given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Utilizing user-centred system design and evaluation method has become an increasingly important tool to foster better usability in the field of virtual environments (VEs). In recent years, although it is still the norm that designers and developers are concerning the technological advancement and striving for designing impressive multimodal multisensory interfaces, more and more awareness are aroused among the development team that in order to produce usable and useful interfaces, it is essential to have users in mind during design and validate a new design from users' perspective. In this paper, we describe a user study carried out to validate a newly developed haptically enabled virtual training system. By taking consideration of the complexity of individual differences on human performance, adoption and acceptance of haptic and audio-visual I/O devices, we address how well users learn, perform, adapt to and perceive object assembly training. We also explore user experience and interaction with the system, and discuss how multisensory feedback affects user performance, perception and acceptance. At last, we discuss how to better design VEs that enhance users perception, their interaction and motor activity.