8 resultados para forward simulation

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A method for bone strain estimation is examined in this article. The flexibility of a single bone in an otherwise rigid human skeleton model has been studied previously by various authors. However, in the previous studies, the effect of the flexibility of multiple bones on the musculoskeletal model behavior was ignored. This study describes a simulation method that can be used to estimate the bone strains at both tibias and femurs of a 65-year old Caucasian male subject. The verification of the method is performed by the comparison of the results with other studies available in literature. The results of the study show good correlation with the results of previous empirical studies. A damping effect of the flexible bones on the model is also studied in this paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Savonius turbine, although simple in construction, typically has a maximum power coefficient (cP) of about 0.2. This is significantly lower than the cP of the axial flow propeller-type turbine which typically can be as high as 0.5. However, a simple means to improve the cP of a Savonius turbine is to install it above a forward facing step, for example, a cliff or a building. In this work, prior experimental results of the tow testing of a Savonius turbine installed above a finite-width bluff body were used to validate computational fluid dynamics simulation of the same experimental conditions. The validated simulation settings were then used to obtain the maximum cP of a similar turbine of finite width but installed above an infinite-width forward facing step over a range of installation positions above and behind the step.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Load-induced strains applied to bone can stimulate its development and adaptation. In order to quantify the incident strains within the skeleton, in vivo implementation of strain gauges on the surfaces of bone is typically used. However, in vivo strain measurements require invasive methodology that is challenging and limited to certain regions of superficial bones only such as the anterior surface of the tibia. Based on our previous study [Al Nazer et al. (2008) J Biomech. 41:1036–1043], an alternative numerical approach to analyse in vivo strains based on the flexible multibody simulation approach was proposed. The purpose of this study was to extend the idea of using the flexible multibody approach in the analysis of bone strains during physical activity through integrating the magnetic resonance imaging (MRI) technique within the framework. In order to investigate the reliability and validity of the proposed approach, a three-dimensional full body musculoskeletal model with a flexible tibia was used as a demonstration example. The model was used in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model was developed using the actual geometry of human tibia, which was obtained from three-dimensional reconstruction of MRI. Motion capture data obtained from walking at constant velocity were used to drive the model during the inverse dynamics simulation in order to teach the muscles to reproduce the motion in the forward dynamics simulation. Based on the agreement between the literature-based in vivo strain measurements and the simulated strain results, it can be concluded that the flexible multibody approach enables reasonable predictions of bone strain in response to dynamic loading. The information obtained from the present approach can be useful in clinical applications including devising exercises to prevent bone fragility or to accelerate fracture healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A potential severe plastic deformation process known as axi-symmetrical forward spiral extrusion (AFSE) has been studied numerically and experimentally. The process is based on the extrusion of cylindrical samples through a die with engraved spiral grooves in a near zero shape change manner. The process was simulated using a three dimensional finite element (FE) model that has been developed using commercial software, ABAQUS. In order to verify the finite element results, hot rolled and annealed samples of the alloy were experimentally processed by AFSE. The required extrusion forces during the process were estimated using the FE model and compared with the experimental values. The reasonable agreement between the FE results and experimental data verified the accuracy of the FE model. The numerical results indicate the linear strain distribution in the AFSE sample is only valid for a core concentric while the strain distribution in the vicinity of the grooves is non axi-symmetric. The FE simulation results from this research allows a better understanding of AFSE kinematics especially near the grooves, the required extrusion force and the resultant induced strain distribution in the sample. To compare the mechanical properties of the Mg-1.75Mn alloy before and after the process, a micro shear punch test was used. The tests were performed on samples undergoing one and four passes of AFSE. After four passes of AFSE, it was observed that the average shear strength of the alloy has improved by about 21%. The developedfinite element model enables tool design and material flow simulation during the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cooperative communication (CC) offers an efficient and low-cost way to achieve spatial diversity by forming a virtual antenna array among single-antenna nodes that cooperatively share their antennas. It has been well recognized that the selection of relay nodes plays a critical role in the performance of CC. Most existing relay selection strategies focus on optimizing the outage probability or energy consumption. To fill in the vacancy of research on throughput improvement via CC, we study the relay selection problem with the objective of optimizing the throughput in this paper. For unicast, it is a P problem, and an optimal relay selection algorithm is provided with a correctness proof. For broadcast, we show the challenge of relay selection by proving it nonprobabilistic hard (NP-hard). A greedy heuristic algorithm is proposed to effectively choose a set of relay nodes that maximize the broadcast throughput. Simulation results show that the proposed algorithms can achieve high throughput under various network settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article proposes a bias-adjusted estimator for use in cointegrated panel regressions when the errors are cross-sectionally correlated through an unknown common factor structure. The asymptotic distribution of the new estimator is derived and is examined in small samples using Monte Carlo simulations. For the estimation of the number of factors, several information-based criteria are considered. The simulation results suggest that the new estimator performs well in comparison to existing ones. In our empirical application, we provide new evidence suggesting that the forward rate unbiasedness hypothesis cannot be rejected. © The Author 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the impact of channel estimation error on the achievable common rate and error performance of amplify and forward (AF) multi-way relay networks (MWRNs). Assuming lattice codes with large dimensions, we provide the analytical expressions for the end-to-end SNR at the users and obtain upper bounds on the achievable common rate for an AF MWRN. Moreover, considering binary phase shift keying (BPSK) modulation as the simplest case of lattice codes, we obtain the average bit error rate (BER) for a user in an AF MWRN. The analysis shows that the average BER is a linearly increasing function and the achievable common rate is a linearly decreasing function of the channel estimation error. On the other hand, the average BER decreases and the achievable common rate increases with increasing correlation between the true and the estimated channel. Also, we observe that the AFprotocol is robust against increasing number of users in terms of error performance. We show that when the decoding user has better channel conditions compared to other users, AF relaying gives a better error performance and common rate. Finally, simulation results are provided to verify the validity of our analysis.