82 resultados para fibers and carotenoids

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silk is a structural protein fiber that is stable over a wide pH range making it attractive for use in medical and environmental applications. Variation in amino acid composition has the potential for selective binding for ions under varying conditions. Here we report on the metal ion separation potential of Mulberry and Eri silk fibers and powders over a range of pH. Highly sensitive radiotracer probes, 64Cu2+, 109Cd2+, and 57Co2+ were used to study the absorption of their respective stable metal ions Cu2+, Cd2+, and Co2+ into and from the silk sorbents. The total amount of each metal ion absorbed and time taken to reach equilibrium occurred in the following order: Cu2+ > Cd2+ > Co 2+. In all cases the silk powders absorbed metal ions faster than their respective silk fibers. Intensive degumming of the fibers and powders significantly reduced the time to absorb respective metal ions and the time to reach equilibrium was reduced from hours to 5-15 min at pH 8. Once bound, 45-100% of the metal ions were released from the sorbents after exposure to pH 3 buffer for 30 min. The transition metal ion loading capacity for the silk sorbents was considerably higher than that found for commercial ion exchange resins (AG MP-50 and AG 50W-X2) under similar conditions. Interestingly, total Cu2+ bound was found to be higher than theoretically predicted values based on known specific Cu2+ binding sites (AHGGYSGY), suggesting that additional (new) sites for transition metal ion binding sites are present in silk fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Key points in the formation of liquid crystalline (LC) dispersions of graphene oxide (GO) and their processability via wet-spinning to produce long lengths of micrometer-dimensional fibers and yarns are addressed. Based on rheological and polarized optical microscopy investigations, a rational relation between GO sheet size and polydispersity, concentration, liquid crystallinity, and spinnability is proposed, leading to an understanding of lyotropic LC behavior and fiber spinnability. The knowledge gained from the straightforward formulation of LC GO “inks” in a range of processable concentrations enables the spinning of continuous conducting, strong, and robust fibers at concentrations as low as 0.075 wt%, eliminating the need for relatively concentrated spinning dope dispersions. The dilute LC GO dispersion is proven to be suitable for fiber spinning using a number of coagulation strategies, including non-solvent precipitation, dispersion destabilization, ionic cross-linking, and polyelectrolyte complexation. One-step continuous spinning of graphene fibers and yarns is introduced for the first time by in situ spinning of LC GO in basic coagulation baths (i.e., NaOH or KOH), eliminating the need for post-treatment processes. The thermal conductivity of these graphene fibers is found to be much higher than polycrystalline graphite and other types of 3D carbon based materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simplified wet-spinning process for the production of continuous poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) fibers is reported. Conductivity enhancement of PEDOT:PSS fibers up to 223 S cm−1 has been demonstrated when these fibers are exposed to ethylene glycol as a post-synthesis processing step. In a new spinning approach it is shown that by employing a spinning formulation consisting of an aqueous blend of PEDOT:PSS and poly(ethlylene glycol), the need for post-spinning treatment with ethylene glycol is eliminated. With this approach, 30-fold conductivity enhancements from 9 to 264 S cm−1 are achieved with respect to an untreated fiber. This one-step approach also demonstrates a significant enhancement in the redox properties of the fibers. These improvements are attributed to an improved molecular ordering of the PEDOT chains in the direction of the fiber axis and the consequential enrichment of linear (or expanded-coil like) conformation to preference bipolaronic electronic structures as evidenced by Raman spectroscopy, solid-state electron spin resonance (ESR) and in situ electrochemical ESR studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schizochytrium sp. S31 was shown to have potential for production of the functional food ingredients docosahexaenoic acid (DHA) and astaxanthin, with coproduction of biodiesel. Biomass and lipid levels were greater with glycerol than with glucose as carbon source. Addition of propyl gallate or butylated hydroxytoluene to the media resulted in increased biomass and lipid levels, with propyl gallate being the more effective of the two antioxidants. Medium supplementation with propyl gallate at 0.03% and glycerol as the carbon source resulted in enhanced biomass productivity (28.50 g L-1), lipid accumulation (24.87 g L-1) and astaxanthin levels (452.26 μg L-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photochromic fibers and fabrics can change color in response to light radiation. They represent a smart textile having attracted much attention recently and showing potential applications in diverse areas. This review chapter gives an overview of the state-of-the-art techniques for the preparation of photochromic fibers and fabrics. The properties and applications of photochromic fabrics are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microalgal species are potential resource of both biofuels and high-value metabolites, and their production is growth dependent. Growth parameters can be screened for the selection of novel microalgal species that produce molecules of interest. In this context our review confirms that, autotrophic and heterotrophic organisms have demonstrated a dual potential, namely the ability to produce lipids as well as value-added products (particularly carotenoids) under influence of various physico-chemical stresses on microalgae. Some species of microalgae can synthesize, besides some pigments, very-long-chain polyunsaturated fatty acids (VL-PUFA,>20C) such as docosahexaenoic acid and eicosapentaenoic acid, those have significant applications in food and health. Producing value-added by-products in addition to biofuels, fatty acid methyl esters (FAME), and lipids has the potential to improve microalgae-based biorefineries by employing either the autotrophic or the heterotrophic mode, which could be an offshoot of biotechnology. The review considers the potential of microalgae to produce a range of products and indicates future directions for developing suitable criteria for choosing novel isolates through bioprospecting large gene pool of microalga obtained from various habitats and climatic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtually all fibers exhibit some dimensional and structural irregularities. These include the conventional textile fibers, the high-performance brittle fibers and even the newly developed nano-fibers. In recent years, we have systematically examined the effect of fiber dimensional irregularities on the mechanical behavior of the irregular fibers. This paper extends our research to include the combined effect of dimensional and structural irregularities, using the finite element method (FEM). The dimensional irregularities are represented by sine waves with a 30 % magnitude of diameter variation while the structural irregularities are represented by longitudinal and horizontal cavities distributed within the fiber structure. The results indicate that fiber geometrical or dimensional variations have a marked influence on the tensile properties of the fiber. It affects not only the values of the breaking load and extension, but also the shape of the load-extension curves. The fiber structural irregularities simulated in this study appear to have little effect on the shape of the load-extension curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent model of the Single Fiber Analyzer 3001 (SIFAN3001) was firstly employed to obtain the single wool fiber diameter profiles (SfFDPs) at multiple orientations. The results showed that using SIFAN3001 to measure fiber diameter at four orientations for 50 single fibers randomly sub-sampled from each mid-side sample can produce average fiber diameter profiles (AS fFDPs) of fibers within staples. Within the testing regime used, the precision estimates for the total samples were ±1.3 µm for the mean fiber diameter of staples and 1.4 µm for the average fiber diameter of the AS fFDPs at each scanned step in the diameter profile. The mean diameter ratio (ellipticity) obtained from the four orientations was 1.08±0.01, confirming that the Merino wool fibers under review were elliptical rather than circular. The elliptical morphology of wool fibers and the precision of the fiber diameter measurement at each point along a fiber will be considered in the development of a mechanical model of Staple Strength testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polydimethylsiloxane (PDMS) fibers with unexpected elasticity were prepared by a modified core-shell electrospinning method using a commercially-available liquid PDMS precursor (Sylgard 184) and polyvinylpyrrolidone (PVP) as core and sheath materials, respectively. The liquid PDMS precursor was crosslinked in situ to form a solid core when the newly-electrospun core-sheath nanofibers were deposited onto a hot-plate electrode collector. After dissolving the PVP sheath layer off the fibers, net PDMS fibers showed larger average diameter than core-sheath fibers, with an average diameter around 1.35 μm. The tensile properties of both single fibers and fibrous mats were measured. Single PDMS fibers had a tensile strength and elongation at break of 6.0 MPa and 212%, respectively, which were higher than those of PDMS cast film (4.9 MPa, 93%). The PDMS fiber mat had larger elongation at break than the single PDMS fibers, which can be drawn up to 403% their original length. Cyclic loading tests indicated a Mullin effect on the PDMS fiber mats. Such a superior elastic feature was attributed to the PDMS molecular orientation within fibers and the randomly-orientated fibrous structure. Highly-elastic, ultrafine PDMS fibers may find applications in strain sensors, biomedical engineering, wound healing, filtration, catalysis, and functional textiles. © The Royal Society of Chemistry 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibers growing, branching, and bundling are essential for the development of crystalline fiber networks of molecular gels. In this work, for two typical crystalline fiber networks, i.e. the network of spherulitic domains and the interconnected fibers network, related kinetic information is obtained using dynamic rheological measurements and analysis in terms of the Avrami theory. In combination with microstructure characterizations, we establish the correlation of the Avrami derived kinetic parameter not only with the nucleation nature and growth dimensionality of fibers and branches, but also with the fiber bundles induced by fiber-fiber interactions. Our study highlights the advantage of simple dynamic rheological measurements over other spectroscopic methods used in previous studies for providing more kinetic information on fiber-fiber interactions, enabling the Avrami analyses to extract distinct kinetic features not only for fibers growing and branching, but also for bundling in the creation of strong interconnected fibers networks. This work may be helpful for the implementation of precise kinetic control of crystalline fiber network formations for achieving desirable microstructures and rheological properties for advanced applications of gel materials. This journal is © the Partner Organisations 2014.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Softness is an important property of textile fibers, and animal fibers in particular. At present, there is no reliable method for objectively evaluating fiber softness. This paper examines a simple technique of such evaluations by pulling a bundle of parallel fibers through a series of pins. Softer fibers with lower bending rigidities and smoother surfaces should have lower pulling forces. Alpaca and wool fibers are used in this study to validate this technique, and the results suggest that pulling force measurements can reflect differences in fiber softness.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1 (PGC-1) can induce mitochondria biogenesis and has been implicated in the development of oxidative type I muscle fibers. The PPAR isoforms α, β/δ, and γ control the transcription of genes involved in fatty acid and glucose metabolism. As endurance training increases skeletal muscle mitochondria and type I fiber content and fatty acid oxidative capacity, our aim was to determine whether these increases could be mediated by possible effects on PGC-1 or PPAR-α, -β/δ, and -γ. Seven healthy men performed 6 weeks of endurance training and the expression levels of PGC-1 and PPAR-α, -β/δ, and -γ mRNA as well as the fiber type distribution of the PGC-1 and PPAR-α proteins were measured in biopsies from their vastus lateralis muscle. PGC-1 and PPAR-α mRNA expression increased by 2.7- and 2.2-fold (P < 0.01), respectively, after endurance training. PGC-1 expression was 2.2- and 6-fold greater in the type IIa than in the type I and IIx fibers, respectively. It increased by 2.8-fold in the type IIa fibers and by 1.5-fold in both the type I and IIx fibers after endurance training (P < 0.015). PPAR-α was 1.9-fold greater in type I than in the II fibers and increased by 3.0-fold and 1.5-fold in these respective fibers after endurance training (P < 0.001). The increases in PGC-1 and PPAR-α levels reported in this study may play an important role in the changes in muscle mitochondria content, oxidative phenotype, and sensitivity to insulin known to be induced by endurance training.