2 resultados para diamond films

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intrinsic stress, film density and nitrogen content of carbon nitride (CNx) films deposited from a filtered cathodic vacuum arc were determined as a function of substrate bias, substrate temperature and nitrogen process pressure. Contour plots of the measurements show the deposition conditions required to produce the main structural forms of CNx including N-doped tetrahedral amorphous carbon (ta-C:N) and a variety of nitrogen containing graphitic carbons. The film with maximum nitrogen content (~ 30%) was deposited at room temperature with 1.0 mTorr N2 pressure and using an intermediate bias of - 400 V. Higher nitrogen pressure, higher bias and/or higher temperature promoted layering with substitutional nitrogen bonded into graphite-like sheets. As the deposition temperature exceeded 500 °C, the nitrogen content diminished regardless of nitrogen pressure, showing the meta-stability of the carbon-nitrogen bonding in the films. Hardness and ductility measurements revealed a diverse range of mechanical properties in the films, varying from hard ta-C:N (~ 50 GPa) to softer and highly ductile CN x which contained tangled graphite-like sheets. Through-film current-voltage characteristics showed that the conductance of the carbon nitride films increased with nitrogen content and substrate bias, consistent with the transition to more graphite-like films. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of the induced stress on undoped and boron-doped diamond (BDD) thin films by confocal Raman microscopy is performed in this study to investigate its correlation with sample chemical composition and the substrate used during fabrication. Knowledge of this nature is very important to the issue of long-term stability of BDD coated neurosurgical electrodes that will be used in fast-scan cyclic voltammetry, as potential occurrence of film delaminations and dislocations during their surgical implantation can have unwanted consequences for the reliability of BDD-based biosensing electrodes. To achieve a more uniform deposition of the films on cylindrically-shaped tungsten rods, substrate rotation was employed in a custom-built chemical vapor deposition reactor. In addition to visibly preferential boron incorporation into the diamond lattice and columnar growth, the results also reveal a direct correlation between regions of pure diamond and enhanced stress. Definite stress release throughout entire film thicknesses was found in the OPEN ACCESS current Raman mapping images for higher amounts of boron addition. There is also a possible contribution to the high values of compressive stress from sp2 type carbon impurities, besides that of the expected lattice mismatch between film and substrate.