67 resultados para autonomous intelligent systems

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pt. I. Fundamentals of hybrid intelligent systems and agents -- 1. Introduction -- 2. Basics of hybrid intelligent systems -- 3. Basics of agents and multi-agent systems -- Pt. II. Methodology and framework -- 4. Agent-oriented methodologies -- 5. Agent-based framework for hybrid intelligent systems --6. Matchmaking in middle agents -- Pt. III. Application systems -- 7. Agent-based hybrid intelligent system for financial investment
planning -- 8. Agent-based hybrid intelligent system for data mining -- Pt. IV. Concluding remarks -- 9. The less the more -- App. Sample source codes of the agent-based financial planning system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many complex problems including financial investment planning, foreign exchange trading, knowledge discovery from large/multiple databases require hybrid intelligent systems that integrate many intelligent techniques including expert systems, fuzzy logic, neural networks, and genetic algorithms. However, hybrid intelligent systems are difficult to develop because they have a large number of parts or components that have many interactions. On the other hand, agents offer a new and often more appropriate route to the development of complex systems, especially in open and dynamic environments. In this paper, it is argued that agent technology is well snited for constructing hybrid intelligent systems (especially loosely coupled hybrid intelligent systems) through a successful case study. A great number of heterogeneous computing techniques/packages are easily integlated into the experimental system under a unifying agent framework, which implies that agent technology can greatly facilitate the construction of hybrid intelligent systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many complex problems (e.g., financial investment planning, foreign exchange trading, data mining from large/multiple databases) require hybrid intelligent systems that integrate many intelligent techniques (e.g., fuzzy logic, neural networks, and genetic algorithms). However, hybrid intelligent systems are difficult to develop because they have a large number of parts or components that have many interactions. On the other hand, agents offer a new and often more appropriate route to the development of complex systems, especially in open and dynamic environments. Thus, this paper discusses the development of an agent-based hybrid intelligent system for financial investment planning, in which a great number of heterogeneous computing techniques/packages are easily integrated into a unifying agent framework. This shows that agent technology can indeed facilitate the development of hybrid intelligent systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development and use of cocycles for analysis of non-autonomous behaviour is a technique that has been known for several years. Initially developed as an extension to semi-group theory for studying rion-autonornous behaviour, it was extensively used in analysing random dynamical systems [2, 9, 10, 12]. Many of the results regarding asymptotic behaviour developed for random dynamical systems, including the concept of cocycle attractors were successfully transferred and reinterpreted for deterministic non-autonomous systems primarily by P. Kloeden and B. Schmalfuss [20, 21, 28, 29]. The theory concerning cocycle attractors was later developed in various contexts specific to particular classes of dynamical systems [6, 7, 13], although a comprehensive understanding of cocycle attractors (redefined as pullback attractors within this thesis) and their role in the stability of non-autonomous dynamical systems was still at this stage incomplete. It was this purpose that motivated Chapters 1-3 to define and formalise the concept of stability within non-autonomous dynamical systems. The approach taken incorporates the elements of classical asymptotic theory, and refines the notion of pullback attraction with further development towards a study of pull-back stability arid pullback asymptotic stability. In a comprehensive manner, it clearly establishes both pullback and forward (classical) stability theory as fundamentally unique and essential components of non-autonomous stability. Many of the introductory theorems and examples highlight the key properties arid differences between pullback and forward stability. The theory also cohesively retains all the properties of classical asymptotic stability theory in an autonomous environment. These chapters are intended as a fundamental framework from which further research in the various fields of non-autonomous dynamical systems may be extended. A preliminary version of a Lyapunov-like theory that characterises pullback attraction is created as a tool for examining non-autonomous behaviour in Chapter 5. The nature of its usefulness however is at this stage restricted to the converse theorem of asymptotic stability. Chapter 7 introduces the theory of Loci Dynamics. A transformation is made to an alternative dynamical system where forward asymptotic (classical asymptotic) behaviour characterises pullback attraction to a particular point in the original dynamical system. This has the advantage in that certain conventional techniques for a forward analysis may be applied. The remainder of the thesis, Chapters 4, 6 and Section 7.3, investigates the effects of perturbations and discretisations on non-autonomous dynamical systems known to possess structures that exhibit some form of stability or attraction. Chapter 4 investigates autonomous systems with semi-group attractors, that have been non-autonomously perturbed, whilst Chapter 6 observes the effects of discretisation on non-autonomous dynamical systems that exhibit properties of forward asymptotic stability. Chapter 7 explores the same problem of discretisation, but for pullback asymptotically stable systems. The theory of Loci Dynamics is used to analyse the nature of the discretisation, but establishment of results directly analogous to those discovered in Chapter 6 is shown to be unachievable. Instead a case by case analysis is provided for specific classes of dynamical systems, for which the results generate a numerical approximation of the pullback attraction in the original continuous dynamical system. The nature of the results regarding discretisation provide a non-autonomous extension to the work initiated by A. Stuart and J. Humphries [34, 35] for the numerical approximation of semi-group attractors within autonomous systems. . Of particular importance is the effect on the system's asymptotic behaviour over non-finite intervals of discretisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Goal-directed problem solving as originally advocated by Herbert Simon’s means-ends analysis model has primarily shaped the course of design research on artificially intelligent systems for problem-solving. We contend that there is a definite disregard of a key phase within the overall design process that in fact logically precedes the actual problem solving phase. While systems designers have traditionally been obsessed with goal-directed problem solving, the basic determinants of the ultimate desired goal state still remain to be fully understood or categorically defined. We propose a rational framework built on a set of logically interconnected conjectures to specifically recognize this neglected phase in the overall design process of intelligent systems for practical problem-solving applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis demonstrated the architecture of adaptive intelligent systems for energy management that is capable of interacting with complex systems including the vehicle, environment, and driver components, as well as the interrelationships between these variables, to deliver fuel consumption improvements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we proposed an adaptive fuzzy multi-surface sliding control (AFMSSC) for trajectory tracking of 6 degrees of freedom inertia coupled aerial vehicles with multiple inputs and multiple outputs (MIMO). It is shown that an adaptive fuzzy logic-based function approximator can be used to estimate the system uncertainties and an iterative multi-surface sliding control design can be carried out to control flight. Using AFMSSC on MIMO autonomous flight systems creates confluent control that can account for both matched and mismatched uncertainties, system disturbances and excitation in internal dynamics. It is proved that the AFMSSC system guarantees asymptotic output tracking and ultimate uniform boundedness of the tracking error. Simulation results are presented to validate the analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a multi-surface sliding control (MSSC) is proposed for trajectory tracking of 6 degrees of freedom (6-DOF) inertia coupled aerial vehicles with multiple inputs and multiple outputs (MIMO). It is shown that an iterative MSSC design can be carried out to control flight. Using MSSC on MIMO autonomous flight systems creates confluent control that can account for model mismatches, system uncertainties, system disturbances and excitation in internal dynamics. We prove that the MSSC system guarantees asymptotic output tracking and ultimate uniform boundedness of the system. Simulation results are presented to validate the analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a hardware in the loop simulation of our proposed multi-surface sliding control (MSSC) for trajectory tracking of 6 degrees of freedom (6-DOF) inertia coupled aerial vehicles with multiple inputs and multiple outputs (MIMO). Using MSSC on MIMO autonomous flight systems creates confluent control that can account for both matched and mismatched uncertainties, system disturbances and excitation in internal dynamics. The control law is implemented on an onboard computer and is validated though Hardware-In-the-Loop (HIL) simulations, between the hardware and the flight simulator X-Plane, which simulates the unmanned aircraft dynamics, sensors, and actuators. Simulation results are presented to validate the analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This exhibition project tested the limits of human and robot proficiencies through a series of experimental scenarios. The project explored methods of producing feedback systems through perception and action cycles. The exhibition consisted of two parallel events: a laboratory space where the artists were 'in-residence', producing drawings in conjunction with the robot; and a procedural drawing exhibition in an adjoining space, where the outcomes of this human/non-human team were exhibited alongside the work of practitioners who have been exploring rule-based drawing for some time. The aim was to make and to discuss approaches to embodied, expanded and autonomous intelligent systems.