33 resultados para atomic force spectroscopy

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The double layer structure of two ionic liquids (ILs), 1-butyl-1- methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate ([Py 1,4]FAP) and 1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate ([EMIm]FAP) at the polarized Au(111) electrode interface is probed using Atomic Force Microscopy force measurements. The force-separation profiles suggest a multilayered morphology is present at the electrified Au(111)-IL interface, with more near surface layers detected at higher potentials. At the (slightly negative) open circuit potential, multiple ion layers are present, and the innermost layer, in contact with the Au(111) surface, is enriched in the cation due to electrostatic adsorption. Upon applying negative electrode potentials (-1.0 V, -2.0 V), stronger IL near surface structure is detected: both the number of ion layers and the force required to rupture these layers increases. Positive electrode potentials (+1.0 V, +2.0 V) also enhance IL near surface structure, but not as much as negative potentials, because surface-adsorbed anions are less effective at templating structure in subsequent layers than cations. This interfacial structure is not consistent with a double layer in the Stern-Gouy-Chapman sense, as there is no diffuse layer. The structure is consistent with a capicitative double-layer model, with a very small separation distance between the planes of charge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The phase behavior, hydrogen bonding interactions and morphology of poly(hydroxyether of bisphenol A) (phenoxy) and poly(var epsilon-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP) were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy and atomic force microscopy (AFM). In this A-b-B/C type block copolymer/homopolymer system, both P2VP and PCL blocks have favorable intermolecular interaction towards phenoxy via hydrogen bonding. However, the hydrogen bonding between P2VP and phenoxy is significantly stronger than that between PCL and phenoxy. Selective hydrogen bonding between phenoxy/P2VP pair at lower phenoxy contents and co-existence of two competitive hydrogen bonding interactions between phenoxy/P2VP and phenoxy/PCL pairs at higher phenoxy contents were observed in the blends. This leads to the formation of a variety of composition dependent nanostructures including wormlike, hierarchical and core–shell morphologies. The blends became homogeneous at 95 wt% phenoxy where both blocks of the PCL-b-P2VP were miscible with phenoxy due to hydrogen bonding. In the end, a model was proposed to explain the microphase morphology of blends based on the experimental results obtained. The swelling of the PCL-b-P2VP block copolymer by phenoxy due to selective hydrogen bonding causes formation of different microphases

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanostructured complexes were prepared from poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) and poly(4-vinylphenol) (PVPh) in tetrahydrofuran (THF). The phase behavior, specific interactions, and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). In this A-b-B/C type block copolymer/homopolymer system, both blocks of the PCL-b-P2VP block copolymer have favorable intermolecular interaction toward PVPh via hydrogen bonding, but the interaction between P2VP block and PVPh is significantly stronger than that between PCL block and PVPh. It was found that the disparity in competitive intermolecular interactions, specifically PVPh and P2VP block interact strongly whereas PVPh and PCL block interact weakly, leads to the formation of a variety of nanostructures depending on PVPh concentration. Spherical micelles of 30−40 nm in diameter were obtained in the complex with 10 wt % PVPh, followed by wormlike micelles with size in the order of 40−50 nm in the complexes with 30−60 wt % PVPh. At low PVPh concentrations, PCL interacts weakly with PVPh, whereas in the complexes containing more than 20 wt % PVPh, the PCL block began to interact considerably with PVPh, leading to the formation of composition-dependent nanostructures. The complex becomes homogeneous with PVPh content beyond 60 wt %, since a sufficient amount of PVPh is available to form hydrogen bonds with both PCL and P2VP. Finally, a model was proposed to explain the self-assembly and microphase morphology of these complexes based on the experimental results obtained. The competitive hydrogen-bonding interactions cause the self-assembly and formation of different microphase morphologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanostructured poly(ε-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP)/poly(acrylic acid) (PAA) interpolyelectrolyte complexes (IPECs) were prepared by casting from THF/ethanol solution. The morphological behaviour of this amphiphilic block copolymer/polyelectrolyte complexes with respect to the composition was investigated in a solvent mixture. The phase behaviour, specific interactions and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy (OM), dynamic light scattering (DLS) and atomic force microscopy (AFM). Micelle formation occurred due to the aggregation of hydrogen bonded P2VP block and polyelectrolyte (PAA) from non-interacted PCL blocks. It was observed that the hydrodynamic diameter (Dh) of the micelles in solution decreased with increasing PAA content up to 40 wt%. After 50 wt% PAA content, Dh again increased. The micelle formation in PCL-b-P2VP/PAA IPECs was due to the strong intermolecular hydrogen bonding between PAA homopolymer units and P2VP blocks of the block copolymer. The penetration of PAA homopolymers into the shell of the PCL-b-P2VP block copolymer micelles resulted in the folding of the P2VP chains, which in turn reduced the hydrodynamic size of the micelles. After the saturation of the shell with PAA homopolymers, the size of the micelles increased due to the absorption of added PAA onto the surface of the micelles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Blends of poly(2-vinyl pyridine)-block-poly(methyl methacrylate) (P2VP-b-PMMA) and poly(hydroxyether of bisphenol A) (phenoxy) were prepared by solvent casting from chloroform solution. The specific interactions, phase behavior and nanostructure morphologies of these blends were investigated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this block copolymer/homopolymer blend system, it is established that competitive hydrogen bonding exists as both blocks of the P2VP-b-PMMA are capable of forming intermolecular hydrogen bonds with phenoxy. It was observed that the interaction between phenoxy and P2VP is stronger than that between phenoxy and PMMA. This imbalance in the intermolecular interactions and the repulsions between the two blocks of the diblock copolymer lead to a variety of phase morphologies. At low phenoxy concentration, spherical micelles are observed. As the concentration increases, PMMA begins to interact with phenoxy, leading to the changes of morphology from spherical to wormlike micelles and finally forms a homogenous system. A model is proposed to describe the self-assembled nanostructures of the P2VP-b-PMMA/phenoxy blends, and the competitive hydrogen bonding is responsible for the morphological changes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

pH sensitive graphene−polymer composites have been prepared by the modification of graphene basal planes with pyrene-terminated poly(2-N,N′-(dimethyl amino ethyl acrylate) (PDMAEA) and poly(acrylic acid) (PAA) via π−π stacking. The pyrene-terminal PDMAEA and PAA were synthesized using reversible addition−fragmentation chain transfer (RAFT) polymerization with a pyrene-functional RAFT agent. The graphene−polymer composites were found to demonstrate phase transfer behavior between aqueous and organic media at different pH values. Atomic force microscopy (AFM) analysis revealed that the thicknesses of the graphene−polymer sheets were approximately 3.0 nm when prepared using PDMAEA (Mn: 6800 and PDI: 1.12). The surface coverage of polymer chains on the graphene basal plane was calculated to be 5.3 × 10−11 mol cm−2 for PDMAEA and 1.3 × 10−10 mol cm−2 for PAA. The graphene−polymer composites were successfully characterized using X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR) spectroscopy, and thermogravimetric analysis (TGA). Self-assembly of the two oppositely charged graphene−polymer composites afforded layer-by-layer (LbL) structures as evidenced by high-resolution scanning electron microscopy (SEM) and quartz crystal microbalance (QCM) measurements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is confirmed that a layer of vacuum-evaporated carbon on the surface of a preoriented ultrathin polymer film can lead to an oriented recrystallization of the polymer film. This has been attributed to a strong fixing effect of vacuum-evaporated carbon layer on the film surface of the polymer. To study the origin of the strong fixing effect of vacuum-evaporated carbon layer on the polymer films, the melting and recrystallization behaviors of the preoriented ultrathin PE film with a vacuum-evaporated carbon layer were studied by using atomic force microscopy, electron diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. We found that there exists some extent of chain orientation of carbon-coated polyethylene (PE) preoriented ultrathin film above its melting temperature. These oriented PE chain sequences act as nucleation sites and induce the oriented recrystallization of preoriented PE film from melt. Raman spectroscopy results suggest that new carbon-carbon bonds between the carbon layer and the oriented PE film are created during the process of vacuum carbon evaporation. As a result, some of the PE chain stems are fixed to the coated carbon substrate via covalent bond. Such a bonding has retarded the relaxation of the PE chains at the spot and, therefore, preserves the original orientation of the PE stems at high temperature, which in turn derives the recrystallization of the PE chains in an oriented structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Surface-enhanced infrared absorption (SEIRA) spectra of manganese (III) tetraphenylporphine chloride (Mn(TPP)Cl) on metal island films were measured in transmission mode. Dependences of the enhancement factor of SEIRA on both the sample quantity and the type of evaporated metal were investigated by subsequently increasing the amount of Mn(TPP)Cl on gold and silver substrates. The enhancement increases nonlinearly with the amount of sample and varies slightly with the thickness of metal islands. In particular, the SEIRA transmission method presents an anomalous spectral enhancement by a factor of 579, with substantial spectral shifts, observed only for the physisorbed Mn(TPP)Cl that remained on a 3-nm-thick gold film after immersion of the substrates into acetone. A charge-transfer (CT) interaction between the porphyrinic Mn and gold islands is therefore proposed as an additional factor in the SEIRA mechanism of the porphyrin system. The number of remaining porphyrin molecules was estimated by calibration-based fluorescence spectroscopy to be 2.36×1013 molecules (i.e., ~2.910-11 mol/cm2) for a 3-nm-thick gold film, suggesting that the physisorbed molecules distributed very loosely on the metal island surface as a result of the weak van der Waals interactions. Fluorescence microscopy revealed the formation of microcrystalline porphyrin aggregates during the consecutive increase in sample solution. However, the immersion likely redistributed the porphyrin to be directly attached on the gold surface, as evidenced by an absence of porphyrinic microcrystals and the observed SEIRA enhancement. The distinctive red shift in the UV-visible spectra and the SEIRA-enhanced peaks indicate the presence of a preferred orientation in the form of the porphyrin ring inclined with respect to the gold surface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The data covers the following:
X-ray photoelectron spectroscopy (XPS) - to collect surface chemical structure changes (using RMIT instrument);
Scanning electron microscopy (SEM) - to collect surface physical structure changes;
Atomic force microscopy (AFM) - to collect surface morphology changes;
Internal/External quantum efficiency (IQE/EQE) – to collect DSSC (Dye Sensitised Solar Cells) efficiency data;
Discharge/Charge capacity - to collect battery efficiency data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The application of surface force apparatus (SFA) capabilities in measuring interactions between surfaces over nanometer separations was described. The technique is used when both the materials are transparent. It was observed that the poorly reflecting surface produce fringes that have low contrast and low finesse. The results show that the technique is successful when the visibility of the interference fringes is maximized.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Superhydrophobic electrospun polyacrylonitrile nanofibre membranes have been prepared by surface coating of silica nanoparticles and fluorinated alkyl silane. The coated membranes were characterised by scanning electron microscopy, water contact angle, thermogravimetry analysis, Brunauer–Emmett–Teller, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. It was shown that the loading of nanoparticle on the nanofibre membrane was controlled by the particle concentration in the coating solution, which played a critical role in the formation of superhydrophobic surface. Increased particle loading led to higher surface roughness and WCA. The nanoparticle coating had little influence on the porosity of the nanofibre membranes. However, overloading of the particles would affect the specific surface area of the nanofibre membrane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of rf-power in the range from 100 to 200 W on the electrochemical properties of TiN coatings deposited on 316L stainless steel was investigated by using various electrochemical techniques in a 3.5-wt\% NaCl solution. Surface analyses were also conducted to analyze the coating characteristics. X-ray diffraction (XRD) and atomic force microscopy (AFM) analyses confirmed that increasing the rf-power led to a preferred orientation of the TiN(200) microstructure and decreased the surface roughness. The potentiodynamic test results confirmed the passive behavior of all of the specimens with low passive current densities and demonstrated that the effective pitting resistance of the TiN coatings increased with increasing rf-power. The electrochemical impedance spectroscopy (EIS) tests showed that the TiN films deposited with high rf-power had excellent corrosion resistance during an immersion time of 720 h due to their high total resistance and low porosity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three types of methylcyclohexane (MCH) coating were deposited as interlayer dielectrics on copper using plasma-enhanced chemical vapor deposition (PECVD) at three different RF plasma power levels. The coating performance was then evaluated by an electrochemical im pedance spectroscopy (EIS) and a potentiodynamic polarization test in 3.5 wt.% NaCl solution. An atomic force microscopy (AFM) and Fourier transform infrared reflection (FT-IR) spectroscopy were also conducted to analyze the coatings. The MCH coatings showed a lower corrosion rate than the copper substrate in the potentiodynamic tests. The EIS results showed that the corrosion resistance of the coatings increased with an increasing plasma power. Thus, the MCH films with an increasing plasma power improved the corrosion resistance due to the formation of a low-porosity coating, the enhanced formation of C−H, C−C, and C≡C stretching configurations, and the improved smooth surfaces.