26 resultados para allo-HSCT, GvL, GvHD, cDNA-expression cloning, allo-reactive T cells

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A role for the copper transporter, ATP7B, in secretion of copper from the human breast into milk has previously not been reported, although it is known that the murine ortholog of ATP7B facilitates copper secretion in the mouse mammary gland. We show here that ATP7B is expressed in luminal epithelial cells in both the resting and lactating human breast, where it has a perinuclear localization in resting epithelial cells and a diffuse location in lactating tissue. ATP7B protein was present in a different subset of vesicles from those containing milk proteins and did not overlap with Menkes ATPase, ATP-7A, except in the perinuclear region of cells. In the cultured human mammary line, PMC42-LA, treatment with lactational hormones induced a redistribution of ATP7B from a perinuclear region to a region adjacent, but not coincident with, the apical plasma membrane. Trafficking of ATP7B was copper dependent, suggesting that the hormone-induced redistribution of ATP7A was mediated through an increase in intracellular copper. Radioactive copper (64Cu) studies using polarized PMC42-LA cells that overexpressed mAtp7B protein showed that this transporter facilitates copper efflux from the apical surface of the cells. In summary, our results are consistent with an important function of ATP7B in the secretion of copper from the human mammary gland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current study, the relative contribution of cell-surface components (CSC) and cell-free supernatants (CFS) in the immuno-modulatory properties of 17 strains of probiotic and lactic acid bacteria (LAB) was assessed. The production of pro- and antiinflammatory cytokines including IL-2, IL-4, IL-10, IL-12 p70, IFN-γ, tumor necrosis factor-α (TNF-α), and transforming growth factor-β was measured at different time points after stimulation of buffy coat derived-peripheral blood mononuclear cells (PBMC) from healthy donors with CSC and CFS of probiotic and LAB. Results showed that CSC of probiotic and LAB strains induced production of T helper 1 and 2 type cytokines. Transforming growth factor-β was stimulated at highest concentrations, followed by IL-10 and TNF-α. The CFS of all tested bacterial strains induced PBMC for significantly high levels of IL-10 secretion compared with unstimulated cells, but the values were less than lipopolysaccharide-stimulated cells. Cytokines due to CFS stimulation showed declined concentration for IL-2, TNF-α, and IL-4, and complete disappearance of IL-12, IFN-γ, and transforming growth factor-β in the cultured medium at 96 h of incubation. Results of cytokine data demonstrate proinflammatory TNF-α immune responses are mainly directed through cell-surface structures of probiotic and LAB, but antiinflammatory immune responses are mediated both by metabolites and cell-surfaces of these bacteria. The induction of CD4(+)CD25(+) regulatory T cells after stimulation of PBMC with CSC and CFS of probiotic and LAB showed regulatory T cell activity appeared to be influenced both by the CSC and metabolites, but was principally triggered by cell surfaces of probiotic and LAB strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhabdomyosarcomas (RMS) are highly aggressive tumors that are thought to arise as a consequence of the regulatory disruption of the growth and differentiation of skeletal muscle progenitor cells. Normal myogenesis is characterized by the expression of the myogenic regulatory factor gene family but, despite their expression in RMS, these tumor cells fail to complete the latter stages of myogenesis. The RMS cell line RD-A was treated with 12-O-tetradecanoylphorbol-13-acetate to induce differentiation and cultured for 10 days. RNA was extracted on days 1, 3, 6, 8 and 10. A human skeletal muscle cDNA microarray was developed and used to analyze the global gene expression of RMS tumors over the time-course of differentiation. As a comparison, the genes identified were subsequently examined during the differentiated primary human skeletal muscle cultures. Prothymosin alpha (PTMA), and translocase of inner mitochondrial membrane 10 (Tim10), two genes not previously implicated in RMS, showed reduced expression during differentiation. Marked differences in the expression of PTMA and Tim10 were observed during the differentiation of human primary skeletal muscle cells. These results identify several new genes with potential roles in the myogenic arrest present in rhabdomyosarcoma. PTMA expression in RMS biopsy samples might prove to be an effective diagnostic marker for this disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhotekin belongs to the group of proteins containing a Rho-binding domain that are target peptides (effectors) for the Rho-GTPases. We previously identified a novel cDNA with homology to human rhotekin and in this study we cloned and characterized the coding region of this novel 12-exon gene. The ORF encodes a 609 amino-acid protein comprising a Class I Rho-binding domain and pleckstrin homology (PH) domain. Cellular cDNA expression of this new protein, designated Rhotekin-2 (RTKN2), was shown in the cytosol and nucleus of CHO cells. Using bioinformatics and RTPCR we identified three major splice variants, which vary in both the Rho-binding and PH domains. Real-time PCR studies showed exclusive RTKN2 expression in pooled lymphocytes and further purification indicated sole expression in CD4pos T-cells and bone marrow-derived B-cells. Gene expression was increased in quiescent T-cells but negligible in activated proliferating cells. In malignant samples expression was absent in myeloid leukaemias, low in most B-cell malignancies and CD8pos T-cell malignancies, but very high in CD4pos/CD8pos T-lymphoblastic lymphoma. As the Rho family is critical in lymphocyte development and function, RTKN2 may play an important role in lymphopoiesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intracellular zinc homeostasis is strictly regulated by zinc binding proteins and zinc transporters. In the present study, we quantified in a first global view the expression of all characterized human zinc exporters (hZnT-1-9) in different leukocyte subsets in response to zinc supplementation and depletion and analyzed their influence on alterations in the intracellular zinc concentration. We found that hZnT-1 is the most regulated zinc exporter. Furthermore, we discovered that hZnT-4 is localized in the plasma membrane similar to hZnT-1. hZnT-4 is most highly expressed in Molt-4, up-regulated after treatment with PHA and is responsible for the measured decrease of intracellular zinc content after high zinc exposure. In addition, we found that hZnT-5, hZnT-6, and hZnT-7 in Raji as well as hZnT-6 and hZnT-7 in THP-1 are up-regulated in response to cellular zinc depletion. Those zinc exporters are all localized in the Golgi network, and this type of regulation explains the observed zinc increase in both cell types after up-regulation of their expression during zinc deficiency and, subsequently, high zinc exposure. Furthermore, we detected, for the first time, the expression of hZnT-8 in peripheral blood lymphocytes, which varied strongly between individuals. While hZnT-2 was not detectable, hZnT-3 and hZnT-9 were expressed at low levels. Further on, the amount of expression was higher in primary cells than in cell lines. These data provide insight into the regulation of intracellular zinc homeostasis in cells of the immune system and may explain the variable effects of zinc deficiency on different leukocyte subsets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using monoclonal antibodies raised against pollen-specific proteins, we have isolated a cDNA clone, designatedOry-Cl from a rice anther cDNA expression library. A transcript corresponding to theOry-Cl gene showed preferential expression in anthers. This transcript was not detected in any vegetative tissues analysed. RNA gel blot analysis of different developmental stages of anthers showed that theOry-Cl gene is expressed at later stages of pollen development. In situ hybridisation showed that theOry-Cl transcript is only present in mature pollen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Chansu is a transitional Chinese medicine that has been used for centuries as therapy for inflammation, anaesthesia and arrhythmia in China and other Asian countries. Recently, it has also been used for anti-cancer purposes. We have previously shown that Chansu has a huge pro-apoptotic potential on colon cancer cells, but to date the detailed mechanism of this action is not well understood.

Methods: One of the major components of Chansu, Cinobufagin (CBF) was used to treat cancer cells. The expressions of levels of cortactin, an important factor in tumour progression and cancer invasion, were assessed in in vitro and in vivo experiments. Additional analyses were performed in subcellular protein fractions and immune-fluorescent staining was used to define cortactin protein expression and the changes of location in CBF-treated cells.

Results:
CBF strongly inhibited the expression of cortactin in HCT116 cells. There were reductions of both mRNA transcription and protein synthesis, which were more significant in the absence of oxygen in vitro. In addition, nuclear translocation of cortactin was observed in HCT116 cells post CBF exposure but not in the negative control, indicating that CBF is likely to interrupt co-localisation of cortactin to cytoskeletal proteins. Most importantly, CBF could diminish the expression of cortactin in human HCT116 xenograft tumours in nude mouse in vivo.

Conclusions: CBF inhibits cortactin expression and nuclear translocation in colon cancer cells in vitro and in mouse models bearing human colon tumour in vivo, suggesting it might disrupt actin-regulated cell movement. Thus, CBF or Chansu could be developed as an effective anti-cancer therapy to stop local invasion and metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed a method for obtaining viable buccal cells from mouthwash samples for use as a source of mRNA and protein. Immunofluorescent analysis showed that most cells were derived from nonkeratinized parabasal epithelia, with a minor proportion of proliferative cells. Gene expression was detected in buccal cells using reverse transcription PCR, Western blot analysis, and immunofluorescence. Using a keratinocyte-specific medium, buccal cells could be cultured on Matrigel™-coated permeable filters for up to 2 weeks while maintaining the expression of some epithelial-specific markers, including cytokeratin 13, cytokeratin 10, transferrin receptor, and β-integrin. The basal marker cytokeratin 14 and Ki67, an indicator of cellular proliferation, were detected in a few cells. We show that buccal cells can be obtained from a noninvasive procedure for use as a source of material for biochemical analyses. A population of the buccal cells can be maintained in culture for up to 2 weeks using keratinocyte-specific medium in combination with extracellular matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Ovarian cancer is characterized by a wide-spread intra-abdominal metastases which represents a major clinical hurdle in the prognosis and management of the disease. A significant proportion of ovarian cancer cells in peritoneal ascites exist as multicellular aggregates or spheroids. We hypothesize that these cellular aggregates or spheroids are invasive with the capacity to survive and implant on the peritoneal surface. This study was designed to elucidate early inherent mechanism(s) of spheroid survival, growth and disaggregation required for peritoneal metastases.

Methods: In this study, we determined the growth pattern and adhesive capacity of ovarian cancer cell lines (HEY and OVHS1) grown as spheroids, using the well established liquid overlay technique, and compared them to a normal ovarian cell line (IOSE29) and cancer cells grown as a monolayer. The proteolytic capacity of these spheroids was compared with cells grown as a monolayer using a gelatin zymography assay to analyze secreted MMP-2/9 in conditioned serum-free medium. The disaggregation of cancer cell line spheroids was determined on extracellular matrices (ECM) such as laminin (LM), fibronectin (FN) and collagen (CI) and the expression of α2, α3, αv, α6 and β1 interin was determined by flow cytometric analysis. Neutralizing antibodies against α2, β1 subunits and α2β1 integrin was used to inhibit disaggregation as well as activation of MMPs in spheroids.

Results: We demonstrate that ovarian cancer cell lines grown as spheroids can sustain growth for 10 days while the normal ovarian cell line failed to grow beyond 2 days. Compared to cells grown as a monolayer, cancer cells grown as spheroids demonstrated no change in adhesion for up to 4 days, while IOSE29 cells had a 2–4-fold loss of adhesion within 2 days. Cancer cell spheroids disaggregated on extracellular matrices (ECM) and demonstrated enhanced expression of secreted pro-MMP2 as well as activated MMP2/MMP9 with no such activation of MMP's observed in monolayer cells. Flow cytometric analysis demonstrated enhanced expression of α2 and diminution of α6 integrin subunits in spheroids
versus monolayer cells. No change in the expression of α3, αv and β1 subunits was evident. Conversely, except for αv integrin, a 1.5–7.5-fold decrease in α2, α3, α6 and β1 integrin subunit expression was observed in IOSE29 cells within 2 days. Neutralizing antibodies against α2, β1 subunits and α2β1 integrin inhibited disaggregation as well as activation of
MMPs in spheroids.

Conclusion: Our results suggest that enhanced expression of α2β1 integrin may influence spheroid disaggregation and
proteolysis responsible for the peritoneal dissemination of ovarian carcinoma. This may indicate a new therapeutic target
for the suppression of the peritoneal metastasis associated with advanced ovarian carcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brown adipose tissue uncoupling protein-1 (UCP1) plays a major role in the control of energy balance in rodents. It has long been thought, however, that there is no physiologically relevant UCP1 expression in adult humans. In this study we show, using an original approach consisting of sorting cells from various tissues and differentiating them in an adipogenic medium, that a stationary population of skeletal muscle cells expressing the CD34 surface protein can differentiate in vitro into genuine brown adipocytes with a high level of UCP1 expression and uncoupled respiration. These cells can be expanded in culture, and their UCP1 mRNA expression is strongly increased by cell-permeating cAMP derivatives and a peroxisome-proliferator-activated receptor-{gamma} (PPAR{gamma}) agonist. Furthermore, UCP1 mRNA was detected in the skeletal muscle of adult humans, and its expression was increased in vivo by PPAR{gamma} agonist treatment. All the studies concerning UCP1 expression in adult humans have until now been focused on the white adipose tissue. Here we show for the first time the existence in human skeletal muscle and the prospective isolation of progenitor cells with a high potential for UCP1 expression. The discovery of this reservoir generates a new hope of treating obesity by acting on energy dissipation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The secreted metalloprotease ADAMTS5 is implicated in destruction of the cartilage proteoglycan aggrecan in arthritis, but its physiological functions are unknown. Its expression profile during embryogenesis and in adult tissues is therefore of considerable interest. β-Galactosidase (β-gal) histochemistry, enabled by a LacZ cassette inserted in the Adamts5 locus, and validated by in situ hybridization with an Adamts5 cRNA probe and ADAMTS5 immunohistochemistry, was used to profile Adamts5 expression during mouse embryogenesis and in adult mouse tissues. Embryonic expression was scarce prior to 11.5 days of gestation (E11.5) and noted only in the floor plate of the developing brain at E9.5. After E11.5 there was continued expression in brain, especially in the choroid plexus, peripheral nerves, dorsal root ganglia, cranial nerve ganglia, spinal and cranial nerves, and neural plexuses of the gut. In addition to nerves, developing limbs have Adamts5 expression in skeletal muscle (from E13.5), tendons (from E16.5), and inter-digital mesenchyme of the developing autopod (E13.5–15.5). In adult tissues, there is constitutive Adamts5 expression in arterial smooth muscle cells, mesothelium lining the peritoneal, pericardial and pleural cavities, smooth muscle cells in bronchi and pancreatic ducts, glomerular mesangial cells in the kidney, dorsal root ganglia, and in Schwann cells of the peripheral and autonomic nervous system. Expression of Adamts5 during neuromuscular development and in smooth muscle cells coincides with the broadly distributed proteoglycan versican, an ADAMTS5 substrate. These observations suggest the major contexts in which developmental and physiological roles could be sought for this protease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene for Rhotekin 2 (RTKN2) was originally identified in a promyelocytic cell line resistant to oxysterol-induced apoptosis. It is differentially expressed in freshly isolated CD4+ T-cells compared with other hematopoietic cells and is down-regulated following activation of the T-cell receptor. However, very little is known about the function of RTKN2 other than its homology to Rho-GTPase effector, rhotekin, and the possibility that they may have similar roles. Here we show that stable expression of RTKN2 in HEK cells enhanced survival in response to intrinsic apoptotic agents; 25-hydroxy cholesterol and camptothecin, but not the extrinsic agent, TNFα. Inhibitors of NF-KappaB, but not MAPK, reversed the resistance and mitochondrial pro-apoptotic genes, Bax and Bim, were down regulated. In these cells, there was no evidence of RTKN2 binding to the GTPases, RhoA or Rac2. Consistent with the role of RTKN2 in HEK over-expressing cells, suppression of RTKN2 in primary human CD4+ T-cells reduced viability and increased sensitivity to 25-OHC. The expression of the pro-apoptotic genes, Bax and Bim were increased while BCL-2 was decreased. In both cell models RTKN2 played a role in the process of intrinsic apoptosis and this was dependent on either NF-KappaB signaling or expression of downstream BCL-2 genes. As RTKN2 is a highly expressed in CD4+ T-cells it may play a role as a key signaling switch for regulation of genes involved in T-cell survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hypertrophic Heart Rat (HHR) displays spontaneous cardiomyocyte hypertrophy in association with an apparent reduction in myocyte number in adulthood. This suggests the possibility of reduced hyperplasia or increased apoptosis during early cardiac development. The angiotensin AT1 and AT2 receptor subtypes have been implicated in both cellular growth and apoptosis, but the precise mechanisms are unclear. The aim of this study was to determine the relationship between cardiac AngII receptor expression levels and neonatal cardiomyocyte growth and apoptotic responses in the HHR compared with the Normal Heart Rat (NHR) control strain. Cardiac tissues were freshly harvested from male HHR and NHR at several developmental stages (p2 and 4, 6, 8, 12wks). HHR cardiac weight indices were considerably smaller than NHR at day 2 (4.330.19 vs 5.010.08 mg/g), but ‘caught-up’ to NHR by 4 weeks (5.100.15 vs 5.160.11 mg/g). By 12 weeks, HHR hearts were 27% larger than NHR. Tissue AT1A and AT2 mRNA expression levels were quantified by real-time RT-PCR. Relative to NHR, HHR neonatal hearts exhibited a 4.6-fold higher AT2/AT1 mRNA expression ratio. Cultured neonatal cardiomyocytes were infected with AT1A and/or AT2 receptor-expressing adenoviruses to achieve a physiological level of receptor expression (150 fmol receptor protein/mg total cell protein). In addition, to emulate receptor expression in neonatal HHR hearts, cells were co-infected with AT1A and AT2 receptors at a 4:1 ratio. Apoptosis incidence was studied by morphological analysis after 72 hours exposure to 0.1 M AngII. When infected with the AT1A receptor alone, a higher proportion of HHR myocytes appeared apoptotic than NHR (22.7 4.1% vs 1.1 0.6%, P 0.001). This implies that intrinsic differences predispose HHR cells to accentuated AT1-mediated apoptosis. Interestingly, the bax-1/bcl-2 mRNA expression ratio was significantly higher (50%) in HHR neonatal hearts. When cells were co-infected with AT1A and AT2 receptors, evidence of apoptosis in HHR cells virtually disappeared (0.4 0.1%). These findings suggest a novel capacity of AT2 receptors to counteract accentuated AT1A receptor-induced apoptosis in the HHR in early cardiac growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the presence and significance of retroviral genome-derived DNA in the core of human immunodeficiency virus (HIV) particles produced from transfections of HXB2 expression vectors in COS-7 cells and from HIV type 1 IIIB chronically infected H9 cells. Viruses purified by sucrose cushion centrifugation and treated with DNase I contained 1000-fold more viral RNA than DNA. However protease-defective viruses that contained only pl60 ga~p°z had less than 100 times the amount of DNA in their cores than wild-type viruses suggesting that the p66/p51 form of reverse transcriptase was responsible for DNA transcription. Viruses produced by transfections in the presence of 3'-azido-3'-deoxythymidine (AZT) contained the viral RNA genome but only DNA of premature length because of the chain terminating effects of AZT. However such viruses were as infectious for CD4 + cells as wild-type virus. We conclude that retrovirus-derived DNA in HIV-1 particles is not required for infection and does not play a significant role in this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) promote histone posttranslational modifications, which lead to an epigenetic alteration in gene expression. Aberrant regulation of HATs and HDACs in neuronal cells results in pathological consequences such as neurodegeneration. Alzheimer's disease is the most common neurodegenerative disease of the brain, which has devastating effects on patients and loved ones. The use of pan-HDAC inhibitors has shown great therapeutic promise in ameliorating neurodegenerative ailments. Recent evidence has emerged suggesting that certain deacetylases mediate neurotoxicity, whereas others provide neuroprotection. Therefore, the inhibition of certain isoforms to alleviate neurodegenerative manifestations has now become the focus of studies. In this review, we aimed to discuss and summarize some of the most recent and promising findings of HAT and HDAC functions in neurodegenerative diseases.