68 resultados para all-solid-state lasers

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application of Li-ion batteries with liquid electrolytes at elevated temperatures (above 60°C) is limited due to the decomposition of the electrolyte. Stable solid state electrolytes can solve this problem, but the conductivity of these electrolytes are relatively low, the interfacial contacts with the electrodes are poor, and the charge transfer kinetics in the electrodes are limited. Solutions for these problems by using composite electrodes and electrolytes have been investigated and the results are described. A new concept for making all-solid-state Li-ion batteries that can be applied in the temperature range between room temperature and about 150°C will be presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doping the molecular plastic crystal of succinonitrile with solid N-methyl-N-butylpyrrolidinium iodide salt and iodine has produced a highly conductive solid iodide/triiodide conductor. Furthermore, it was employed for a highly efficient, all-solid-state dye-sensitized solar cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm(-2) was achieved at a scan rate of 10 mV s(-1) using the composite electrode with a high mass loading (8.49 mg cm(-2)), indicating the potential to be used in practical applications. To demonstrate this applicability, a roll-up supercapacitor device was constructed, which illustrated the operation of a green LED light for 20 seconds when fully charged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plastic crystal materials have long been known but have only relatively recently become of interest as solid–state ion conductors. Their properties are often associated with dynamic orientational disorder or rotator motions in the crystalline lattice. This paper describes recent work in the field including the range of organic ionic compounds that exhibit ion conduction at room temperature. Conductivity in some cases is high enough to render the compounds of interest as electrolyte materials in all solid state electrochemical devices. Doping of the plastic crystal phase with a small ion such as Li+ in some cases produces an even higher conductivity. In this case the plastic crystal acts as a solid state “solvent” for the doped ion and supports the conductive motion of the dopant via motions of the matrix ions. These doped materials are also described in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All solid-state organic ionic plastic crystal–polymer nanofibre composite electrolytes are described for the first time. The new composite materials exhibit enhanced conductivity, excellent thermal, mechanical and electrochemical stability and allow the production of optically transparent, free-standing, flexible, thin film electrolytes (10’s lms thick) for application in electrochemical devices. Stable cycling of a lithium cell incorporating the new composite electrolyte is demonstrated, including cycling at lower temperatures than previously possible with the pure material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The organic ionic plastic crystal material N,N-dimethyl pyrrolidinium tetrafluoroborate ([C1mpyr][BF4]) has been mixed with LiBF4 from 0 to 8 wt% and shown to exhibit enhanced ionic conductivity, especially in the higher temperature plastic crystal phases (phases II and I). The materials retain their solid state well above 100 °C with the melt not being observed up to 300 °C. Interestingly the conductivity enhancement is highest with the lowest level of LiBF4 addition in phase II, but then the order of enhancement is reversed in phase I. In all cases, a conductivity drop is observed at the II → I phase transition (105 °C) which is associated with increased order in the pure matrix, as previously reported, although the conductivity drop is least for the highest LiBF4 amount (8 wt%). The 8 wt% sample displays different conductivity behaviours compared to the lower LiBF4 concentrations, with a sharp increase above 50 °C, which is apparently not related to the formation of an amorphous phase, based on XRD data up to 120 °C. Symmetric cells, Li/OIPC/Li, were prepared and cycled at 50 °C and showed evidence of significant preconditioning with continued cycling, leading to a lower over-potential and a concomitant decrease in the cell resistivity as measured by EIS. An SEM investigation of the Li/OIPC interfaces before and after cycling suggested significant grain refinement was responsible for the decrease in cell resistance upon cycling, possibly as a result of an increased grain boundary phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new solid-state reaction to form metal nitrides has been investigated. It was confirmed that single phase chromium nitride is formed by a solid-state diffusion reaction between iron nitride and chromium chloride powders at temperatures between 570-700°C. The discovered reaction can be applied to form chromium nitride coatings on tool steels for metal forming applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 The investigation of solid state sodium ion electrolytes based on Organic Ionic Plastic Crystals were carried out for potential use in the electrochemical devices such as batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen-14 solid-state NMR (SSNMR) is utilized to differentiate three polymorphic forms and a hydrochloride (HCl) salt of the amino acid glycine. Frequency-swept Wideband, Uniform Rate, Smooth Truncated (WURST) pulses were used in conjunction with Carr-Purcell Meiboom-Gill refocusing, in the form of the WURST-CPMG pulse sequence, for all spectral acquisitions. The 14N quadrupolar interaction is shown to be very sensitive to variations in the local electric field gradients (EFGs) about the 14N nucleus; hence, differentiation of the samples is accomplished through determination of the quadrupolar parameters CQ and ηQ, which are obtained from analytical simulations of the 14N SSNMR powder patterns of stationary samples (i.e., static NMR spectra). Additionally, differentiation of the polymorphs is also possible via the measurement of 14N effective transverse relaxation time constants, Teff2(14N). Plane-wave density functional theory (DFT) calculations, which exploit the periodicity of crystal lattices, are utilized to confirm the experimentally determined quadrupolar parameters as well as to determine the orientation of the 14N EFG tensors in the molecular frames. Several signal-enhancement techniques are also discussed to help improve the sensitivity of the 14N SSNMR acquisition method, including the use of selective deuteration, the application of the BRoadband Adiabatic INversion Cross-Polarization (BRAIN-CP) technique, and the use of variable-temperature (VT) experiments. Finally, we examine several cases where 14N VT experiments employing Carr-Purcell-Meiboom-Gill (CPMG) refocusing are used to approximate the rotational energy barriers for RNH3+ groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proton transport has been recognized as an essential process in many biological systems, as well as electrochemical devices including fuel cells and redox flow batteries. In the present study, we address the pressing need for solvent-free proton conducting polymer electrolytes for high-temperature PEM fuel cell applications by developing a novel all-solid polyelectrolyte membrane with a self-assembled proton-channel structure. We show that this self-assembled nanostructure endows the material with exciting ‘dry’ proton conductivity at elevated temperatures, as high as 0.3 mS cm−1 at 120 °C, making it an attractive candidate for high-temperature PEM fuel cell applications. Based on the combined investigation of solid-state NMR, FTIR and conductivity measurements, we propose that both molecular design and nano-scale structures are essential for obtaining highly conductive anhydrous proton conductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of [R2Sn(H2O)2(OPPh3)2](O3SCF3)2 (R = Me (1), Bu (2)) by the consecutive reaction of R2SnO (R = Me, Bu) with triflic acid and Ph3PO is described. Compounds 1 and 2 feature dialkyltin(IV) dications [R2Sn(H2O)2(OPPh3)2]2+ apparently stabilized by the neutral ligands in the solid state. Compounds 1 and 2 readily dehydrate upon heating at 105 and 86 °C, respectively. The preparative dehydration of 1 afforded [Me2Sn(OPPh3)2(O3SCF3)](O3SCF3) (1a), which features both bidentate and non-coordinating triflate anions. In compounds 1 and 2 the ligands Ph3PO and H2O are kinetically labile in solution and undergo reversible ligand exchange reactions. Compounds 1, 1a and 2 were characterized by multinuclear solution and solid-state NMR spectroscopy, IR spectroscopy, electrospray mass spectrometry, conductivity measurements, thermogravimetry and X-ray crystallography.