2 resultados para Young modulus

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Currently, there is a significant effort into developing novel multiphase microstructures to further improve the strength/ductility combination of advanced high-strength steels. To achieve this, the effect of the microstructure on sheet formability needs to be further understood. In this study, the effect of the microstructure on the variation of the elastic modulus in loading and unloading of DP 780 steel has been investigated. Five microstructures with varying volume fractions of ferrite and martensite were generated using different heat treatment cycles. Tension tests were performed to different strain values and the Young’s Modulus during loading and unloading was determined. The test results show that the reduction in unloading modulus with prestrain depends on the volume fraction and hardness of the martensitic phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Roll forming is a continuous process in which a flat strip is incrementally bent to a desired profile. This process is increasingly used in automotive industry to form High Strength Steel (HSS) and Advanced High Strength Steel (AHSS) for structural components. Because of the large variety of applications of roll forming in the industry, Finite Element Analysis (FEA) is increasingly employed for roll forming process design. Formability and springback are two major concerns in the roll forming AHSS materials. Previous studies have shown that the elastic modulus (Young’s modulus) of AHSS materials can change when the material undergoes plastic deformation and the main goal of this study is to investigate the effect of a change in elastic modulus during forming on springback in roll forming. FEA has been applied for the roll forming simulation of a V-section using material data determined by experimental loading-unloading tests performed on mild, XF400, and DP780 steel. The results show that the reduction of the elastic modulus with pre-strain significantly influences springback in the roll forming of high strength steel while its effect is less when a softer steel is formed.