2 resultados para Young modulus
em CaltechTHESIS
Resumo:
The Young's modulus, stress-strain curves, and failure properties of glass bead-filled EPDM vulcanizates were studied under superposed hydrostatic pressure. The glass bead-filled EPDM was employed as a representation of composite systems, and the hydrostatic pressure controls the filler-elastomer separation under deformation. This separation shows up as a volume change of the system, and its infuence is reflected in the mechanical behavior as a reinforcing effect of variable degree.
The strain energy stored in the composite system in simple tension was calculated by introducing a model which is described as a cylindrical block of elastomer with two half spheres of filler on each end with their centers on the axis of the cylinder. In the derivation of the strain energy, assumptions were made to obtain the strain distribution in the model, and strain energy-strain relation for the elastomer was also assumed. The derivation was carried out for the case of no filler-elastomer separation and was modified to include the case of filler-elastomer separation.
The resulting strain energy, as a function of stretch ratio and volume of the system, was used to obtain stress-strain curves and volume change-strain curves of composite systems under superposed hydrostatic pressure.
Changes in the force and the lateral dimension of a ring specimen were measured as it was stretched axially under a superposed hydrostatic pressure in order to calculate the mechanical properties mentioned above. A tensile tester was used which is capable of sealing the whole system to carry out a measurement under pressure. A thickness measuring device, based on the Hall effect, was built for the measurement of changes in the lateral dimension of a specimen.
The theoretical and experimental results of Young's modulus and stress-strain curves were compared and showed fairly good agreement.
The failure data were discussed in terms of failure surfaces, and it was concluded that a failure surface of the glass-bead-filled EPDM consists of two cones.
Resumo:
Nearly all young stars are variable, with the variability traditionally divided into two classes: periodic variables and aperiodic or "irregular" variables. Periodic variables have been studied extensively, typically using periodograms, while aperiodic variables have received much less attention due to a lack of standard statistical tools. However, aperiodic variability can serve as a powerful probe of young star accretion physics and inner circumstellar disk structure. For my dissertation, I analyzed data from a large-scale, long-term survey of the nearby North America Nebula complex, using Palomar Transient Factory photometric time series collected on a nightly or every few night cadence over several years. This survey is the most thorough exploration of variability in a sample of thousands of young stars over time baselines of days to years, revealing a rich array of lightcurve shapes, amplitudes, and timescales.
I have constrained the timescale distribution of all young variables, periodic and aperiodic, on timescales from less than a day to ~100 days. I have shown that the distribution of timescales for aperiodic variables peaks at a few days, with relatively few (~15%) sources dominated by variability on tens of days or longer. My constraints on aperiodic timescale distributions are based on two new tools, magnitude- vs. time-difference (Δm-Δt) plots and peak-finding plots, for describing aperiodic lightcurves; this thesis provides simulations of their performance and presents recommendations on how to apply them to aperiodic signals in other time series data sets. In addition, I have measured the error introduced into colors or SEDs from combining photometry of variable sources taken at different epochs. These are the first quantitative results to be presented on the distributions in amplitude and time scale for young aperiodic variables, particularly those varying on timescales of weeks to months.