33 resultados para Transducer

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ovarian cancer remains a major cause of cancer mortality in women, with only limited understanding of disease aetiology at the molecular level. Granulocyte colony-stimulating factor (G-CSF) is a key regulator of both normal and emergency haematopoiesis, and is used clinically to aid haematopoietic recovery following ablative therapies for a variety of solid tumours including ovarian cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are seven mammalian signal transducer and activator of transcription (Stat) proteins that act downstream of cytokine and growth factor receptors to mediate rapid changes in gene expression. The mammalian Stat5a and Stat5b genes show high sequence identity and lie adjacent in a head-to-head configuration next to the Stat3 gene, apparently the result of a relatively recent mammal-specific gene duplication event. We have identified and characterized two stat5 homologues that are expressed in zebrafish, named stat5.1 and stat5.2. The stat5.1 gene shows a high level of conservation with the single stat5 gene found in other teleosts and lies next to the stat3 gene, in the same relative orientation as the mammalian Stat5b gene. In contrast, the stat5.2 gene lies on a different chromosome to stat5.1 and stat3, and has diverged from the stat5 genes of other teleosts, with no apparent orthologue. Together, these data suggest that the ancestral Stat5 gene has undergone two independent gene duplication events to generate a stat5.2 paralogue in zebrafish and a Stat5a paralogue in mammals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a simple and reliable method for controlling the relative orientation between the two magnetic fields of a permanent magnet synchronous motor. Finding the initial (at motor powering- up time) value of this relative location is essential for the proper operation of the motor. After showing the system controllability, the utilized feedback control loop finds this initial relative orientation quickly and accurately. Further, using the proposed method allows considerable cost saving, as a transducer that is usually used for this purpose can be eliminated. The cost saving is most obvious in the case of linear motors and angle motors with large diameters. The way the problem is posed is an essential part of this work, and it is the reason behind the apparent simplicity of the solution. The method proposed relies on a single sensor, and it was tested when a relative encoder was used.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Our objective was to delineate the potential role of adipogenesis in insulin resistance and type 2 diabetes. Obesity is characterized by an increase in adipose tissue mass resulting from enlargement of existing fat cells (hypertrophy) and/or from increased number of adipocytes (hyperplasia). The inability of the adipose tissue to recruit new fat cells may cause ectopic fat deposition and insulin resistance.

Research Methods and Procedures: We examined the expression of candidate genes involved in adipocyte proliferation and/or differentiation [ CCAAT/enhancer-binding protein (C/EBP) alpha, C/EBPdelta, GATA domain-binding protein 3 (GATA3), C/EBPbeta, peroxisome proliferator-activated receptor (PPAR) gamma2, signal transducer and activator of transcription 5A (STAT5A), Wnt-10b, tumor necrosis factor alpha, sterol regulatory element-binding protein 1c (SREBP1c), 11 beta-hydroxysteroid dehydrogenase, PPARG angiopoietin-related protein (PGAR), insulin-like growth factor 1, PPARitalic gamma coactivator 1alpha, PPARitalic gamma coactivator 1beta, and PPARdelta] in subcutaneous adipose tissue from 42 obese individuals with type 2 diabetes and 25 non-diabetic subjects matched for age and obesity.

Results: Insulin sensitivity was measured by a 3-hour 80 mU/m2 per minute hyperinsulinemic glucose clamp (100 mg/dL). As expected, subjects with type 2 diabetes had lower glucose disposal (4.9 plusminus 1.9 vs. 7.5 plusminus 2.8 mg/min per kilogram fat-free mass; p < 0.001) and larger fat cells (0.90 plusminus 0.26 vs. 0.78 plusminus 0.17 mum; p = 0.04) as compared with obese control subjects. Three genes (SREBP1c, p < 0.01; STAT5A, p = 0.02; and PPARitalic gamma2, p = 0.02) had significantly lower expression in obese type 2 diabetics, whereas C/EBPbeta only tended to be lower (p = 0.07).

Discussion: This cross-sectional study supports the hypothesis that impaired expression of adipogenic genes may result in impaired adipogenesis, potentially leading to larger fat cells in subcutaneous adipose tissue and insulin resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the granulocyte colony-stimulating factor receptor (G-CSF-R) gene leading to a truncated protein have been identified in a cohort of neutropenia patients highly predisposed to acute myeloid leukemia. Such mutations act in a dominant manner resulting in hyperproliferation but impaired differentiation in response to G-CSF. This is due, at least in part, to defective internalization and loss of binding sites for several negative regulators, leading to sustained receptor activation. However, those signaling pathways responsible for mediating the hyperproliferative function have remained unclear. In this study, analysis of an additional G-CSF-R mutant confirmed the importance of residues downstream of Box 2 as important contributors to the sustained proliferation. However, maximal proliferation correlated with the ability to robustly activate signal transducer and activator of transcription (STAT) 5 in a sustained manner, whereas co-expression of dominant-negative STAT5, but not dominant-negative STAT3, was able to inhibit G-CSF-stimulated proliferation from a truncated receptor. Furthermore, a Janus kinase (JAK) inhibitor also strongly reduced the proliferative response, whereas inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) or phosphatidylinositol (PI) 3-kinase reduced proliferation to a lesser degree. These data suggest that sustained JAK2/STAT5 activation is a major contributor to the hyperproliferative function of truncated G-CSF receptors, with pathways involving MEK and PI 3-kinase playing a reduced role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Janus kinase 2 (Jak2) transduces signals from hematopoietic cytokines, and a gain-of-function mutation (Jak2617V>F) is associated with myeloproliferative diseases, particularly polycythemia vera. In this study, we examined the role of jak2a in zebrafish embryos in knock-down and overexpression studies using morpholinos (MOs) targeting the 5' untranslated region (UTR) (jak2aUTR-MO) and splice-site junction (jak2aSS-MO) of jak2a, a Jak inhibitor AG490 and a constitutive-active form of jak2a (jak2aca). At 18 and 24 hours after fertilization (hpf), jak2a is expressed predominantly in the intermediate cell mass (ICM; site of primitive hematopoiesis) of wild-type and chordin morphant embryos (characterized by expansion of ICM). Both jak2a MOs and AG490 reduced gata1+ (erythroid) cells in Tg(gata1:GFP) embryos, signal transducer and activation of transcription 5 (stat5) phosphorylation, and gene expression associated with early progenitors (scl and lmo2) and erythroid (gata1, he1 and ßhe1) and myeloid (spi1 [early] and mpo [late]) lineages. The chordin morphant is associated with increased stat5 phosphorylation, and both jak2a MOs and treatment with AG490 significantly ameliorated ICM expansion and hematopoietic gene up-regulation in these embryos. Injection of plasmid encoding jak2aca significantly increased erythropoiesis and expression of gata1, he1 and ßhe1, spi1, mpo, and l-plastin. In conclusion, zebrafish jak2a is involved in primitive hematopoiesis under normal and deregulated conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transcription factor signal transducer and activator of transcription 3 (STAT3) has been identified as a mediator of cytokine signaling and implicated in hypertrophy; however, the importance of this pathway following resistance exercise in human skeletal muscle has not been investigated. In the present study, the phosphorylation and nuclear localization of STAT3, together with STAT3-regulated genes, were measured in the early recovery period following intense resistance exercise. Muscle biopsy samples from healthy subjects (7 males, 23.0 + 0.9 yr) were harvested before and again at 2, 4, and 24 h into recovery following a single bout of maximal leg extension exercise (3 sets, 12 repetitions). Rapid and transient activation of phosphorylated (tyrosine 705) STAT3 was observed at 2 h postexercise. STAT3 phosphorylation paralleled the transient localization of STAT3 to the nucleus, which also peaked at 2 h postexercise. Downstream transcriptional events regulated by STAT3 activation peaked at 2 h postexercise, including early responsive genes c-FOS (800-fold), JUNB (38-fold), and c-MYC (140-fold) at 2 h postexercise. A delayed peak in VEGF (4-fold) was measured 4 h postexercise. Finally, genes associated with modulating STAT3 signaling were also increased following exercise, including the negative regulator SOCS3 (60-fold). Thus, following a single bout of intense resistance exercise, a rapid phosphorylation and nuclear translocation of STAT3 are evident in human skeletal muscle. These data suggest that STAT3 signaling is an important common element and may contribute to the remodeling and adaptation of skeletal muscle following resistance exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the current study is to evaluate the cardioprotective effects of purified Salvia miltiorrhiza extract (PSME) on myocardial ischemia/reperfusion injury in isolated rat hearts. Hearts were excised and perfused at constant flow (7 – 9 ml · min−1) via the aorta. Non-recirculating perfusion with Krebs-Henseleit (KH) solution was maintained at 37°C and continuously gassed with 95% O2 and 5% CO2. KH solution with or without PSME (100 mg per liter solution) was used after 30-min zero-flow ischemia for the PSME and control group, respectively. Left ventricular (LV) developed pressure; its derivatives, diastolic pressure, and so on were continuously recorded via a pressure transducer attached to a polyvinylchloride balloon that was placed in the left ventricle through an incision in the left atrium. PSME treated hearts showed significant postischemic contractile function recovery (developed pressure recovered to 44.2 ± 4.9% versus 17.1 ± 5.7%, P<0.05; maximum contraction recovered to 57.2 ± 5.9% versus 15.1 ± 6.3%, P<0.001; maximum relaxation restored to 69.3 ± 7.3% versus 15.4 ± 6.3%, P<0.001 in the PSME and control group, respectively). Significant elevation in end-diastolic pressure, which indicated LV stiffening in PSME hearts might have resulted from the excess high dose of PSME used. Further study will be conducted on the potential therapeutic value with lower dose of PSME on prevention of ischemic heart disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Somatostatin, originally identified as a peptide involved in neurotransmission, functions as an inhibitor of multiple cellular responses, including hormonal secretion and proliferation. Somatostatin acts through activation of G-protein-coupled receptors of which five subtypes have been identified. We have recently established that human CD34/c-kit expressing hematopoietic progenitors and acute myeloid leukemia (AML) cells exclusively express SSTR2. A major mechanism implicated in the antiproliferative action of somatostatin involves activation of the SH2 domain-containing protein tyrosine phosphatase SHP-1. While 0.1-1 x 10(-9) M of somatostatin, or its synthetic stable analog octreotide, can inhibit G-CSF-induced proliferation of AML cells, little or no effects are seen on GM-CSF- or IL-3-induced responses.
MATERIALS AND METHODS: To study the mechanisms underlying the antiproliferative responses of myeloblasts to somatostatin, clones of the IL-3-dependent murine cell line 32D that stably express SSTR2 and G-CSF receptors were generated. RESULTS: Similar to AML cells, octreotide inhibited G-CSF-induced but not IL-3-induced proliferative responses of 32D[G-CSF-R/SSTR2] cells. Somatostatin induced SHP-1 activity and inhibited G-CSF-induced, but not IL-3-induced, activation of the signal transducer and activator of transcription proteins STAT3 and STAT5.
CONCLUSION: Based on these data and previous results, we propose a model in which recruitment and activation of the tyrosine phosphatase SHP-1 by SSTR2 is involved in the selective negative action of somatostatin on G-CSF-R signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A software replacement for the commutation signals of a permanent magnet brushless motor is presented. The feedback observed acceleration loop or equivalently the high-order position polynomial controller allows finding the initial relative orientation between the two magnetic fields of the motors within a fraction of a second. Also, using the proposed method allows a considerable cost saving, since the transducer that is usually used for this purpose can be eliminated. The cost saving is most obvious in the case of linear motors and angle motors with large diameters. The way the problem is posed is an essential part of this work and it is the reason behind the apparent simplicity of the solution. The method has been tested when a relative encoder was used and the motor current was regulated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple and reliable method for controlling the relative orientation between the two magnetic fields of a permanent magnet synchronous motor is presented. Finding the initial (at motor powering-up time) value of this relative location is essential for the proper operation of the motor. The feedback control loop used finds this initial relative orientation quickly. Further, using the proposed method allows considerable cost saving, as a transducer that is usually used for this purpose can be eliminated. The cost saving is most obvious in the case of linear motors and angle motors with large diameters. The way the problem is posed is an essential part of this work and it is the reason behind the apparent simplicity of the solution. The method relied upon a single sensor, and it has been tested when a relative encoder was used

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this preliminary study was to investigate motor cortex (cortical) excitability between a similar fine visuomotor task of varying difficulty. Ten healthy adults (three female, seven male; 20–45 years of age) participated in the study. Participants were instructed to perform a fine visuomotor task by statically abducting their first index finger against a force transducer which displayed the level of force (represented as a marker) on a computer monitor. This marker was to be maintained between two stationary bars, also displayed on the computer monitor. The level of difficulty was increased by amplifying the position of the marker, making the task more difficult to control. Cortical measures of motor evoked potential (MEP) and silent period (SP) duration in first dorsal interosseous (FDI) muscle were obtained using transcranial magnetic stimulation (TMS) while the participant maintained the “easy” or “difficult” static task. An 11.8% increase in MEP amplitude was observed when subjects undertook the “difficult” task, but no differences in MEP latency or SP duration. The results from this preliminary study suggest that cortical excitability increases reflect the demand required to perform tasks requiring greater precision with suggestions for further research discussed.