110 resultados para Titanium (Ti) machining

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research will definitely give guidelines to industries associated with titanium slot machining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research work presents a machinability study between wrought grade titanium and selective laser melted (SLM) titanium Ti-6Al-4V in a face turning operation, machined at cutting speeds between 60 and 180 m/min. Machinability characteristics such as tool wear, cutting forces, and machined surface quality were investigated. Coating delamination, adhesion, abrasion, attrition, and chipping wear mechanisms were dominant during machining of SLM Ti-6Al-4V. Maximum flank wear was found higher in machining SLM Ti-6Al-4V compared to wrought Ti-6Al-4V at all speeds. It was also found that high machining speeds lead to catastrophic failure of the cutting tool during machining of SLM Ti-6Al-4V. Cutting force was higher in machining SLM Ti-6Al-4V as compared to wrought Ti-6Al-4V for all cutting speeds due to its higher strength and hardness. Surface finish improved with the cutting speed despite the high tool wear observed at high machining speeds. Overall, machinability of SLM Ti-6Al-4V was found poor as compared to the wrought alloy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present study, pure titanium (Ti) plates were firstly treated to form various types of oxide layers on the surface and then were immersed into simulated body fluid (SBF) to evaluate the apatite-forming ability. The surface morphology and roughness of the different oxide layers were measured by atomic force microscopy (AFM), and the surface energies were determined based on the Owens–Wendt (OW) methods. It was found that Ti samples after alkali heat (AH) treatment achieved the best apatite formation after soaking in SBF for three weeks, compared with those without treatment, thermal or H2O2 oxidation. Furthermore, contact angle measurement revealed that the oxide layer on the alkali heat treated Ti samples possessed the highest surface energy. The results indicate that the apatite-inducing ability of a titanium oxide layer links to its surface energy. Apatite nucleation is easier on a surface with a higher surface energy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some of the critical properties for a successful orthopedic or dental implant material are its biocompatibility and bioactivity. Pure titanium (Ti) and zirconium (Zr) are widely accepted as biocompatible metals, due to their non-toxicity. While the bioactivity of Ti and some Ti alloys has been extensively investigated, there is still insufficient data for Zr and titanium-zirconium (TiZr) alloys. In the present study, the bioactivity, that is, the apatite forming ability on the alkali and heat treated surfaces of Ti, Zr, and TiZr alloy in simulated body fluid (SBF), was studied. In particular, the effect of the surface roughness characteristics on the bioactivity was evaluated for the first time. The results indicate that the pretreated Ti, Zr and TiZr alloy could form apatite coating on their surfaces. It should be noted that the surface roughness also critically affected the bioactivity of these pretreated metallic samples. A surface morphology with an average roughness of approximately 0.6 microm led to the fastest apatite formation on the metal surfaces. This apatite layer on the metal surface is expected to bond to the surrounding bones directly after implantation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using Titanium (Ti) foam as an implant material is a new approach for biomedical applications and it is important to understand the mechanical behaviors of this new foam material. In the present study, the bending of the Ti foam has been simulated and compared against recently published data [1]. FE Analysis has been performed by Abaqus software. Stiffness and Yield strength of foams between 50% (cortical bone) to 80% (cancellous bone) porosity range were considered. This study showed that crushable foam material model in Abaqus, which has developed primarily for Aluminum (Al) foam alloys, is also valid for Ti Foam before any crack or damage occurs in the sample.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives
The purpose of this study was to investigate the bond strength of apatite layer on titanium (Ti) substrate coated by biomimetic method and to improve the bonding of apatite layer to Ti substrate by optimizing the alkali heat-treatment process.

Methods
Ti plates pre-treated with an alkali solution of 10 M sodium hydroxide (NaOH) were heat-treated at 600 °C for 1 h at different atmospheres: in air and in vacuum. A dense apatite layer formed on top of the sodium titanate layer after soaking the alkali and heat-treated Ti samples in simulated body fluid (SBF) for up to 3 weeks. The bond strengths of the sodium titanate layer on Ti substrate, and apatite layer on the sodium titanate layer, were measured, respectively, by applying a tensile load. The fracture sites were observed with a scanning electron microscope (SEM).

Results
The apatite layer on the substrate after alkali heat-treatment in air achieved higher bond strength than that on the substrate after alkali heat-treatment in vacuum. It was found that the interfacial structure between the sodium titanate and Ti substrate has a significant influence on the bond strength of the apatite layer.

Significance
It is advised that titanium implants can achieve better osseointegration under load-bearing conditions by depositing an apatite layer in vivo on a Ti surface subjected to alkali and heat-treated in air.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Current orthopaedic biomaterials research mainly focuses on designing implants that could induce controlled, guided and rapid healing. In the present study, the surface morphologies of titanium (Ti) and niobium (Nb) metals were tailored to form nanoporous, nanoplate and nanofibre-like structures through adjustment of the temperature in the alkali-heat treatment. The in vitro bioactivity of these structures was then evaluated by soaking the treated samples in simulated body fluid (SBF). It was found that the morphology of the modified surface significantly influenced the apatite-inducing ability. The Ti surface with a nanofibre-like structure showed better apatite-inducing ability than the nanoporous or nanoplate surface structures. A thick dense apatite layer formed on the Ti surface with nanofibre-like structure after 1 week of soaking in SBF. It is expected that the nanofibre-like surface could achieve good apatite formation in vivo and subsequently enhance osteoblast cell adhesion and bone formation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Titanium (Ti) is widely proven to enhance bone contact and growth on its surface. It is expected that bone defects could benefit from Ti to promote healing and to increase strength of the implanted area.

Purpose: The present study aimed at comparing the potential of porous Ti sponge rods with synthetic hydroxyapatite (HA) for the healing of bone defects in a canine model.

Material and Methods: Six mongrel dogs were submitted to three trephined osteotomies of 6.0 × 4.0 mm in one humerus and after 2 months another three osteotomies were performed in the contralateral humerus. A total of 36 defects were randomly filled either with Ti foam, particulate HA, or coagulum (control). The six animals were killed 4 months after the first surgery for histological and histometrical analysis.

Results: The Ti-foam surface was frequently found in intimate contact with new bone especially at the defect walls. Control sites showed higher amounts of newly formed bone at 2 months – Ti (p = 0.000) and HA (p = 0.009) – and 4 months when compared with Ti (p = 0.001). Differently from HA, the Ti foam was densely distributed across the defect area which rendered less space for bone growth in the latter's sites. The use of Ti foams or HA resulted in similar amounts of bone formation in both time intervals. Nevertheless, the presence of a Ti-foam rod preserved defect's marginal bone height as compared with control groups. Also, the Ti-foam group showed a more mature bone pattern at 4 months than HA sites.

Conclusion: The Ti foam exhibited good biocompatibility, and its application resulted in improved maintenance of bone height compared with control sites. The Ti foam in a rod design exhibited bone ingrowth properties suitable for further exploration in other experimental situations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding the mechanical behaviour of pure titanium (Ti) foam is crucial for the design and development of Ti foam-based load-bearing implants. In this work, pure titanium foam is fabricated by a powder metallurgical process using the space-holder technique with a spacer size of 500 to 800 µm. Experimental data from static compression testing on the Ti foam are presented. The application of theoretical formulae to predict Young's modulus and yield strength of titanium foams is also discussed. A foam with 63% porosity, 87 ± 5 MPa yield strength, and 6.5 ± 1.3 GPa Young's modulus is found to be appropriate for a number of dental and orthopaedic applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present study, the influence of calcium ion deposition on the apatite-inducing ability of porous titanium(Ti) was investigated in a modified simulated body fluid (m-SBF). Calcium hydroxide (Ca(OH)2) solutions with five degrees of saturation were used to hydrothermally deposit Ca ions on porous Ti with a porosity of 80%. Apatite-inducing ability of the Ca-ion-deposited porous Ti was evaluated by soaking them in m-SBF for up to 14 days. Scanning electron microscopy (SEM) and X-ray diffractometry (XRD) confirmed that a thin layer of calcium titanate (CaTiO3)/calcium oxide (CaO) mixture with a nanostructured porous network was produced on porous Ti substrates after hydrothermal treatment at 200 °C for 8 h. X-ray photoelectron spectroscopy results demonstrated that the content of the Ca ions deposited on Ti and the thickness of the CaTiO3/CaO layer increased with increasing saturation degree of the Ca(OH)2 solution. The thickest (over 10 nm) CaTiO3/CaO layer with the highest Ca content was achieved on the Ti treated in an oversaturated Ca(OH)2 solution (0.2 M). SEM, XRD, transmission electron microscopy and Fourier transformed infrared spectroscopy analysis indicated that the porous Ti samples deposited with the highest content of Ca ions exhibited the best apatite-inducing ability, producing a dense and complete carbonated apatite coating after a 14 day soaking in m-SBF. The present study illustrated the validity of using Ca ion deposition as a pre-treatment to endow desirable apatite-inducing ability of porous Ti for bone tissue engineering applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Calcium phosphate (Ca-P) coatings were deposited on Ti substrates by a biomimetic method from m-SBF and 10× SBF, respectively. Comparative study of microstructures and bond strengths of the Ca-P coatings deposited from those different SBFs was carried out. Effect of the surface roughness of the substrates on the bond strength of the Ca-P coatings was also studied. Scanning electron microscopy (SEM), X-ray diffractometry (XRD), Fourier transformed infrared spectroscopy (FTIR), inductive coupled plasma spectrometry (ICP) and thermogravimetry (TG) were used to characterize the Ca-P coatings. The bond strengths between the coatings and Ti substrates were measured using an adhesive strength test. Results indicated that the ionic concentrations of the SBFs and the surface roughness of the substrate had a significant influence on the formation, morphology and bond strength of the Ca-P precipitates. The induction period of time to deposit a complete Ca-P layer from the m-SBF is much longer, but the Ca-P coating is denser and has higher bond strength than that formed from the 10× SBF. The Ti with a surface roughness of Ra 0.64 µm and Rz 2.81 µm favoures the formation of a compact Ca-P coating from the m-SBF with the highest bond strength of approximately 15.5 MPa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The importance of particle size in titanium (Ti) fabricated by powder metallurgy for the surface energy and its impact on the apatite formation was investigated. Four sorts of Ti powders of different mean particle size were realized through 20 min, 2 h, 5 h and 8 h of ball milling, respectively. Each sort of Ti powder was used to fabricate porous Ti and its nonporous counterparts sharing similar surface morphology, grain size and chemical composition, and then alkali-heat treatment was conducted on them. Surface energy was measured on the surfaces of the nonporous Ti counterparts due to the difficulty in measuring the porous surfaces directly. The surface energy increase on the alkali-heat-treated porous and nonporous Ti was observed due to the decrease in the particle size of the Ti powders and the presence of Ti–OH groups brought by the alkali-heat treatment. The apatite-inducing ability of the alkali-heat-treated porous and nonporous Ti with different surface energy values was evaluated in modified simulated body fluid and results indicated that there was a strong correlation between the apatite-inducing ability and the surface energy. The alkali-heat-treated porous and nonporous Ti discs prepared from the powders with an average particle size of 5.89 ± 0.76 μm possessed the highest surface energy and the best apatite-inducing ability when compared to the samples produced from the powders with the average particle size varying from 19.79 ± 0.31 to 10.25 ± 0.39 μm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interest in using titanium (Ti) alloys as load-bearing implant materials has increased due to their high strength to weight ratio, lower elastic modulus, and superior biocompatibility and enhanced corrosion resistance compared to conventional metals such as stainless steel and Co-Cr alloys. In the present study, the in vitro cytotoxicity of five binary titanium alloys, Ti15Ta, Ti15Nb, Ti15Zr, Ti15Sn and Ti15Mo, was assessed using human osteosarcoma cell line, SaOS-2 cells. The Cell proliferation and viability were determined, and cell adhesion and morphology on the surfaces of the binary Ti alloys after cell culture were observed by SEM. Results indicated that the Ti binary alloys of Ti15Ta, Ti15Nb and Ti15Zr exhibited the same level of excellent biocompatibility; Ti15Sn alloy exhibited a moderate biocompatibility while Ti15Mo alloy exhibited a moderate cytotoxicity. The SaOS-2 osteoblast-like cells had flattened and spread across the surfaces of the Ti15Ta, Ti15Nb, Ti15Zr and Ti15Sn groups; however, the cell shapes on the Ti15Mo alloy was shrinking and unhealthy. These results indicated that the Mo contents should be limited to a certain level in the design and development of new Ti alloys for implant material applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present study, titanium (Ti) samples were surface-modified by titania (TiO2), silica (SiO2) and hydroxyapatite (HA) coatings using a sol-gel process. The bioactivity of the film-coated Ti samples was investigated by cell attachment and morphology study using human osteoblast-like SaOS-2 cells. Results of the cell attachment indicated that the densities of cell attachment on the surfaces of Ti samples were significantly increased by film coatings; the density of cell attachment on HA film-coated surface was higher than those on TiO2 and SiO2 film-coated surfaces. Cell morphology study showed that the cells attached, spread and grew well on the three kinds of film-coated surfaces. It can be concluded that the three kinds of film coatings can bioactivate the surfaces of Ti samples effectively. Overall, Ti sample with HA film-coated surface exhibited the best bioactivity.