4 resultados para TEMPERATURE ALN INTERLAYERS

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pretty vacancy: The formation energy of Al vacancies in aluminum nitride is decreased by doping with nonmagnetic scandium ions. These vacancies are shown to be the cause of the room-temperature ferromagnetism in the resulting 1D hexagonal nanoprisms of AlN:Sc, a result that is confirmed by first-principles calculations. The doping approach provides a new route to dilute magnetic semiconductor materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Room-temperature ferromagnetism has been observed in Y-doped AlN (AlN:Y) nanorods. Our first-principle calculations have demonstrated that the ferromagnetism in AlN:Y is from Al vacancies and that the introduction of nonmagnetic rare-earth element Y into AlN can significantly reduce the formation energy of Al vacancy which leads to high Al vacancies responsible for the observed ferromagnetism in AlN:Y nanorods. These findings illustrate an efficient way to reduce the formation energy of cation vacancy by doping nonmagnetic elements, such as Y, leading to ferromagnetism in semiconductors.