70 resultados para Surface corrosion

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The corrosion inhibition mechanisms of new cerium and lanthanum cinnamate based compounds have been investigated through the surface characterisation of the steel exposed to NaCl solution of neutral pH. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy was used to identify the nature of the deposits on the metal surface and demonstrated that after accelerated tests the corrosion product commonly observed on steel (i.e. lepidocrocite, γ-FeOOH) is absent. The cinnamate species were clearly present on the steel surface upon exposure to NaCl solution for short periods and appeared to coordinate through the iron. At longer times the Rare Earth Metal (REM) oxyhydroxide species are proposed to form as identified through the bands in the 1400–1500 cm−1 region. These latter bands have been previously assigned to carbonate species adsorbed onto REM oxyhydroxide surfaces. The protection mechanism appears to involve the adsorption of the REM–cinnamate complex followed by the hydrolysis of the REM to form a barrier oxide on the steel surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of materials with otherwise desirable mechanical properties is often problematic in practice as a result of corrosion. Susceptibility may arise for a number of reasons, including an electrochemically heterogeneous surface or destabilisation of a passive film. These shortcomings have historically been overcome through the use of various coatings or claddings. However, a more robust surface layer with enhanced corrosion resistance could possibly be produced via local surface alloying using a fluidised bed. A fluidised bed treatment allows a surface to be alloyed, producing a distinct surface layer up to tens of microns thick. Surface alloying additions can be selected on the basis of whether they are known or suspected to enhance the corrosion resistance of a particular material, whilst at a minimum, surface alloying likely provides a more electrochemically homogeneous surface. Electrochemical evaluations using potentiodynamic polarisations in NaCl electrolytes have shown chromised plain carbon and stainless steel surfaces have decreased rates of corrosion, decreased passive current densities, and ennobled pitting potentials relative to untreated specimens.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrochemical impedance spectroscopy (EIS) was used to study carbon dioxide (CO2) corrosion product scales and their effects on further CO2 corrosion. Objectives were to determine the suitability of EIS for studying corrosion scales and to investigate the influence of environmental factors on scale formation. EIS provided useful information about protective abilities and electrochemical properties of corrosion scales. CO2 corrosion scales formed at high-temperature and pressure provided better protection than those formed at low-temperature and pressure. The level of protection of the scale formed at higher temperature and pressure increased with exposure time. EIS results were compared with coupon weight-loss measurements. Scales were analyzed using a combination of Fourier transform infrared (FTIR) analysis, x-ray diffraction (XRD), and electron microscopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of surface finishes as a function of the pH of the utilized plating solution was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution. In addition, the surface finishes were examined by x-ray diffraction (XRD), and the contact angle of the liquid/solid interface was recorded. NiP films on copper substrates with gold coatings exhibited their highest coating performance at pH 5. This was attributed to the films having the highest protective efficiency and charge transfer resistance, lowest porosity value, and highest contact angle among those examined as a result of the strongly preferred Au(111) orientation and the improved surface wettability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrochemical impedance spectroscopy (EIS) was used to study carbon dioxide (CO2) corrosion product scales and their effects on further CO2 corrosion. Objectives were to determine the suitability of EIS for studying corrosion scales and to investigate the influence of environmental factors on scale formation. EIS provided useful information about protective abilities and electrochemical properties of corrosion scales. CO2 corrosion scales formed at high-temperature and pressure provided better protection than those formed at low-temperature and pressure. The level of protection of the scale formed at higher temperature and pressure increased with exposure time. EIS results were compared with coupon weight-loss measurements. Scales were analyzed using a combination of Fourier transform infrared (FTIR) analysis, x-ray diffraction (XRD), and electron microscopy

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Surface mechanical attrition treatment (SMAT) is a mechanical peening process used to generate ultrafine grain surfaces on a metal. SMAT was carried out on pure magnesium using different attrition media (zirconia [ZiO2], alumina [Al2O3], and steel balls) to observe the effect on microstructure, surface residual stress, surface composition, and corrosion. Surface contamination from SMAT was characterized using glow discharge optical emission spectroscopy (GDOES). The SMAT process produced a refined grain structure on the surface of Mg but resulted in a region of elemental contamination extending ~10 μm into the substrate, regardless of the media used. Consequently, SMAT-treated surfaces showed an increased corrosion rate compared to untreated Mg, primarily through increased cathodic kinetics. This study highlights the issue of contamination resulting from the SMAT process, which is a penalty that accompanies the significant grain refinement of the surface produced by SMAT. This must be considered if attempting to exploit grain refinement for improving corrosion resistance.