17 resultados para Surface Roughness.

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Friction plays an important role in sheet metal forming (SMF) and the roughness of the surface of the sheet is a major factor that influences friction. In finite element method (FEM) models of metal forming, the roughness has usually been assumed to be constant; even though it is commonly observed that sheet drawn under tension over a tool radius results in the surface becoming shiny, indicating a major change in surface morphology. An elastic–plastic FEM model for micro-contact between a flat surface and a single roughness peak has been developed. The model was used to investigate the effect of the membrane stress in the sheet on the deformation of an artificial roughness peak. From the simulation results, the change in asperity, or deformation of the local peak, for a given nominal tool contact stress is significantly influenced by the local substrate stress. The height of the asperity decreases with increasing substrate stress and the local pressure is much higher than the nominal pressure. In addition, the local contact stress decreases with an increase in the substrate stress levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some of the critical properties for a successful orthopedic or dental implant material are its biocompatibility and bioactivity. Pure titanium (Ti) and zirconium (Zr) are widely accepted as biocompatible metals, due to their non-toxicity. While the bioactivity of Ti and some Ti alloys has been extensively investigated, there is still insufficient data for Zr and titanium-zirconium (TiZr) alloys. In the present study, the bioactivity, that is, the apatite forming ability on the alkali and heat treated surfaces of Ti, Zr, and TiZr alloy in simulated body fluid (SBF), was studied. In particular, the effect of the surface roughness characteristics on the bioactivity was evaluated for the first time. The results indicate that the pretreated Ti, Zr and TiZr alloy could form apatite coating on their surfaces. It should be noted that the surface roughness also critically affected the bioactivity of these pretreated metallic samples. A surface morphology with an average roughness of approximately 0.6 microm led to the fastest apatite formation on the metal surfaces. This apatite layer on the metal surface is expected to bond to the surrounding bones directly after implantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first surface force measurements under electrochemical potential control between a metal and a ceramic surface across a liquid medium (water) are reported. Our experiments also investigate and reveal how increasing levels of surface roughness and dissimilarity between the potentials of the interacting surfaces influence the strength and range of electric double layer, van der Waals, hydration, and steric forces and how this contributes to deviations from DLVO theory at small distances within aqueous solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a newly designed electrochemical surface forces apparatus (EC-SFA) that allows control and measurement of surface potentials and interfacial electrochemical reactions with simultaneous measurement of normal interaction forces (with nN resolution), friction forces (with μN resolution), and distances (with Å resolution) between apposing surfaces. We describe three applications of the developed EC-SFA and discuss the wide-range of potential other applications. In particular, we describe measurements of (1) force–distance profiles between smooth and rough gold surfaces and apposing self-assembled monolayer-covered smooth mica surfaces; (2) the effective changing thickness of anodically growing oxide layers with Å-accuracy on rough and smooth surfaces; and (3) friction forces evolving at a metal–ceramic contact, all as a function of the applied electrochemical potential. Interaction forces between atomically smooth surfaces are well-described using DLVO theory and the Hogg–Healy–Fuerstenau approximation for electric double layer interactions between dissimilar surfaces, which unintuitively predicts the possibility of attractive double layer forces between dissimilar surfaces whose surface potentials have similar sign, and repulsive forces between surfaces whose surface potentials have opposite sign. Surface roughness of the gold electrodes leads to an additional exponentially repulsive force in the force–distance profiles that is qualitatively well described by an extended DLVO model that includes repulsive hydration and steric forces. Comparing the measured thickness of the anodic gold oxide layer and the charge consumed for generating this layer allowed the identification of its chemical structure as a hydrated Au(OH)3 phase formed at the gold surface at high positive potentials. The EC-SFA allows, for the first time, one to look at complex long-term transient effects of dynamic processes (e.g., relaxation times), which are also reflected in friction forces while tuning electrochemical surface potentials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic surface roughness prediction during metal cutting operations plays an important role to enhance the productivity in manufacturing industries. Various machining parameters such as unwanted noises affect the surface roughness, whatever their effects have not been adequately quantified. In this study, a general dynamic surface roughness monitoring system in milling operations was developed. Based on the experimentally acquired data, the milling process of Al 7075 and St 52 parts was simulated. Cutting parameters (i.e., cutting speed, feed rate, and depth of cut), material type, coolant fluid, X and Z components of milling machine vibrations, and white noise were used as inputs. The original objective in the development of a dynamic monitoring system is to simulate wide ranges of machining conditions such as rough and finishing of several materials with and without cutting fluid. To achieve high accuracy of the resultant data, the full factorial design of experiment was used. To verify the accuracy of the proposed model, testing and recall/verification procedures have been carried out and results showed that the accuracy of 99.8 and 99.7 % were obtained for testing and recall processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The surface finishes of laminates produced by Quickstep™ and autoclave processes for use in automotive outer skin panels were compared. Automotive quality, painted carbon fibre samples, manufactured via both processes, were exposed to typical exposure environments including combinations of temperature (70, 120, 170°C), UV-B, humidity (95% RH) and immersion in water.

The microscopy and surface roughness results demonstrated that the surfaces produced by the Quickstep process were less susceptible to damage in the aging environments than the surfaces of the autoclaved samples. Quickstep samples displayed surface bubbling of only 5 μm, compared to the autoclaved surface bubbles which reached a diameter of 30 mm before bursting, with complete delamination occurring between the paint and the composite. The surface roughness measurements revealed the autoclave samples (Ra = 0.72 μm) were up to three times the roughness of the Quickstep samples (Ra = 0.23 μm).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis investigated the surface finish of rapidly cured composites for automotive body panels. Findings showed that curing composites with rapid heating rates increased surface roughness, although it improved paint adhesion to the substrate. This thesis also highlighted the need for surface barriers to reduce fibre print through during aging.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Superhydrophobic electrospun polyacrylonitrile nanofibre membranes have been prepared by surface coating of silica nanoparticles and fluorinated alkyl silane. The coated membranes were characterised by scanning electron microscopy, water contact angle, thermogravimetry analysis, Brunauer–Emmett–Teller, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. It was shown that the loading of nanoparticle on the nanofibre membrane was controlled by the particle concentration in the coating solution, which played a critical role in the formation of superhydrophobic surface. Increased particle loading led to higher surface roughness and WCA. The nanoparticle coating had little influence on the porosity of the nanofibre membranes. However, overloading of the particles would affect the specific surface area of the nanofibre membrane.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The performance of composite laminates depends on the adhesion between the fibre reinforcement and matrix, with the surface properties of the fibres playing a key role in determining the level of adhesion achieved. For this reason it is important to develop an in-depth understanding of the surface functionalities on the reinforcement fibres. In this work, multi-scale surface analysis of carbon fibre during the three stages of manufacture; carbonisation, electrolytic oxidation, and epoxy sizing was carried out. The surface topography was examined using scanning electron microscopy (SEM), which revealed longitudinal ridges and striations along the fibre-axis for all fibre types. A small difference in surface roughness was observed by scanning probe microscopy (SPM), while the coefficient of friction measured by an automated single fibre tester showed 51% and 98% increase for the oxidised and sized fibres, respectively. The fibres were found to exhibit heterogeneity in surface energy as evidenced from SPM force measurements. The unsized fibres were much more energetically heterogeneous than the sized fibre. A good correlation was found between fibre properties (both physical and chemical) and interlaminar shear strength (ILSS) of composites made from all three fibre types. © 2014 Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Surface modification techniques are widely used to enhance the biological response to the implant materials. These techniques generally create a roughened surface, effectively increasing the surface area thus promoting cell adhesion. However, a negative side effect is a higher susceptibility of a roughened surface to failure due to the presence of multiple stress concentrators. The purpose of the study reported here was to examine the effects of surface modification by sand blasting and acid-etching (SLA) on the microstructure and fatigue performance of coarse-grained and ultrafine-grained (UFG) commercially pure titanium. Finer grain sizes, produced by equal channel angular pressing, resulted in lower values of surface roughness in SLA-processed material. This effect was associated with greater resistance of the UFG structure to plastic deformation. The fatigue properties of UFG Ti were found to be superior to those of coarse-grained Ti and conventional Ti-6Al-4V, both before and after SLA-treatment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The quality of a machined finish plays a major role in the performance of milling operations, good surface quality can significantly improve fatigue strength, corrosion resistance, or creep behaviour as well as surface friction. In this study, the effect of cutting parameters and cutting fluid pressure on the quality measurement of the surface of the crest for threads milled during high speed milling operations has been scrutinised. Cutting fluid pressure, feed rate and spindle speed were the input parameters whilst minimising surface roughness on the crest of the thread was the target. The experimental study was designed using the Taguchi L32 array. Analysing and modelling the effective parameters were carried out using both a multi-layer perceptron (MLP) and radial basis function (RBF) artificial neural networks (ANNs). These were shown to be highly adept for such tasks. In this paper, the analysis of surface roughness at the crest of the thread in high speed thread milling using a high accuracy optical profile-meter is an original contribution to the literature. The experimental results demonstrated that the surface quality in the crest of the thread was improved by increasing cutting speed, feed rate ranging 0.41-0.45 m/min and cutting fluid pressure ranging 2-3.5 bars. These outcomes characterised the ANN as a promising application for surface profile modelling in precision machining.