16 resultados para Structural materials

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A range of low melting salts of the bis(trifluoromethanesulfonyl)amide (TFSA) anion with hindered organic cations (N-methyl-1-methylpyrrolinium, N,N-dimethylpyrrolidinium, N,N,N,-trimethylammonium, and N,N,N,N-tetrakis(n-propyl)ammonium) have been crystallized. Single-crystal X-ray diffraction data show these materials to consist of discrete ions with only weak C−H···O (or for Me3NH N−H···O) contacts between the constituent atoms of the cations and anions close to the limits of van der Waals separations. Consequently, the observed physical properties of these materials presumably result from the diffuse negative charge on the TFSA anion and inefficient packing of these large and irregularly shaped ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtually all fibers exhibit some dimensional and structural irregularities. These include the conventional textile fibers, the high-performance brittle fibers and even the newly developed nano-fibers. In recent years, we have systematically examined the effect of fiber dimensional irregularities on the mechanical behavior of the irregular fibers. This paper extends our research to include the combined effect of dimensional and structural irregularities, using the finite element method (FEM). The dimensional irregularities are represented by sine waves with a 30 % magnitude of diameter variation while the structural irregularities are represented by longitudinal and horizontal cavities distributed within the fiber structure. The results indicate that fiber geometrical or dimensional variations have a marked influence on the tensile properties of the fiber. It affects not only the values of the breaking load and extension, but also the shape of the load-extension curves. The fiber structural irregularities simulated in this study appear to have little effect on the shape of the load-extension curves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An effective wound dressing is not only able to protect the wound area from its surroundings to avoid infection and dehydration, but also to speed up the healing process by providing an optimum microenvironment for healing, removing any excess wound exudates, and allowing continuous tissue reconstruction. In this study, two biodegradable polymers, polycaprolactone (PCL) and polyvinyl alcohol (PVA), were used to electrospin nanofibre membranes. The wound dressing performances of these two membranes were compared with the wound dressing performances of protein coated membranes and conventional non-woven cotton wound dressings. In addition, fibre morphology, porous structural property, mechanical properties of the nanofibre membranes, and their drainage capacity and wound skin histology were examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigates the effect of fibre irregularities on the mechanical behaviour of the irregular fibres using the finite element method (FEM). The first part of this work examines that the effect of fibre dimensional irregularities on the linear and non-linear tensile behaviour of the fibres, using a two-dimensional (2D) finite element models. In the linear simulation, a concept of method Young’s modulus is introduced. The method Young’s modulus, breaking load and breaking extension are affected by the magnitude and frequency of diameter variation in the fibre specimen. Fibre dimensional variation and the gauge length effect are also simulated. In the non-linear analysis, some additional information is obtained on changes in the yield and post-yield regions, which are clearly shown in the load-extension curves. Further investigation is focused on the flexural buckling behaviour of fibres with dimensional irregularities. A three-dimensional (3D) finite element model is used to simulate the buckling deformation of dimensionally irregular fibres, and the critical buckling load of the simulated fibre is calculated. Two parameters, the effective length and the average diameter within the effective length of an irregular fibre, are considered to be the key factors that influence the buckling behaviour of the fibre. An important aspect of this work is the calculation of the effective length of an irregular fibre specimen during buckling. This method has not been reported before. The third part of this work is on the combined tensile and torsional behaviour of fibres with dimensional irregularities, using a three-dimensional (3D) finite element model. Two types of fibres, polyester and wool, are simulated with sine waves of different level (magnitude) and frequency at different twist levels. For the polyester fibre, experiment verification of the simulation results has been carried out, and the results indicate the FE model is well acceptable for the simulation. The final part of this work examines the combined effect of dimensional and structural irregularities on the fibre tensile behaviour. Three-dimensional (3D) finite element models are used to simulate the cracks (transverse, longitudinal, combined transverse and longitudinal cracks) and cavities distributed in uniform fibres and fibres with 30% level of diameter variation, respectively. One of important conclusions is that under the simulated conditions, the dimensional irregularity of fibre influences the tensile behaviour of fibres more than the fibre structural irregularity. The fibre dimensional irregularity affects not only the values of the breaking load and breaking extension, but also the shape of load-extension curves. However, the fibre structural irregularity simulated in the study appears to have little effect on the shape of the load-extension curves. In addition, the effect of crack or cavity size, type and distribution on fibre tensile properties is also investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results obtained from this work reveal that high porous titanium foams have fracture mechanical properties that meet and exceed the required properties of both cortical and cancellous bones. With their good biocompatibility, light weight, strong structural integrity and possibility of bone in-growth these foams are suitable for biomedical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rheological properties of supramolecular soft functional materials are determined by the networks within the materials. This research reveals for the first time that the volume confinement during the formation of supramolecular soft functional materials will exert a significant impact on the rheological properties of the materials. A class of small molecular organogels formed by the gelation of N-lauroyl-L-glutamic acid din-butylamide (GP-1) in ethylene glycol (EG) and propylene glycol (PG) solutions were adopted as model systems for this study. It follows that within a confined space, the elasticity of the gel can be enhanced more than 15 times compared with those under un-restricted conditions. According to our optical microscopy observations and rheological measurements, this drastic enhancement is caused by the structural transition from a multi-domain network system to a single network system once the average size of the fiber network of a given material reaches the lowest dimension of the system. The understanding acquired from this work will provide a novel strategy to manipulate the network structure of soft materials, and exert a direct impact on the micro-engineering of such supramolecular materials in micro and nano scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supramolecular materials with three-dimensional fiber networks have applications in many fields. For these applications, a homogeneous fiber network is essential in order to get the desired performance of a material. However, such a fiber network is hard to obtain, particularly when the crystallization of fiber takes place nonisothermally. In this work, a copolymer is used to kinetically control the nucleation and fiber network formation of a small molecular gelling agent, N-lauroyl-L-glutamic acid di-nbutylamide (GP-1) in benzyl benzoate. The retarded nucleation and enhanced mismatch nucleation of the gelator by the additive leads to the conversion of a mixed fiber network into a homogeneous network consisting of spherulites only. The enhanced structural mismatch of the GP-1 during crystallization is quantitatively characterized using the rheological data. This effect also leads to the transformation of an interconnecting (single) fiber network of GP-1 into a multidomain fiber network in another solvent, isostearyl alcohol. The approach developed is significant to the production of supramolecular materials with homogeneous fiber networks and is convenient to switch a single fiber network to a multidomain network without adjusting the thermodynamic driving force.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The red-emitting phosphors Ca9Eu2W4O24 and Sr9Eu2W4O24 were synthesized by the solid-state reaction method. The crystal phases were characterized by X-ray powder diffraction. The photoluminescence excitation and emission spectra were investigated. The luminescence excitation and emission spectra confirm that the phosphors are efficiently excited by near UV light. The dependence of luminescence intensities on the heating temperatures was investigated. The Ca9Eu2W4O24 phosphor exhibits higher thermal stability than that of Sr9Eu2W4O24. The crystallographic sites for Eu3+ ions in Ca9Eu2W4O24 and Sr9Eu2W4O24 are investigated by the site-selective excitation spectra in the 5D07F0 wavelength region. It is identified that the Eu3+ ions occupy only M sites (statistically occupied by 0.5Eu and 0.5Ca) in Ca9Eu2W4O24 and, however, the Eu3+ ions can substitute both M sites (Eu3+ + Sr2+) and Sr2+ sites in Sr9Eu2W4O24. The luminescence spectra and the thermal stability are discussed on the basis of the crystal structure, Eu3+ site-distributions and the energy transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controllable 3D assembly of multicomponent inorganic nanomaterials by precisely positioning two or more types of nanoparticles to modulate their interactions and achieve multifunctionality remains a major challenge. The diverse chemical and structural features of biomolecules can generate the compositionally specific organic/inorganic interactions needed to create such assemblies. Toward this aim, we studied the materials-specific binding of peptides selected based upon affinity for Ag (AgBP1 and AgBP2) and Au (AuBP1 and AuBP2) surfaces, combining experimental binding measurements, advanced molecular simulation, and nanomaterial synthesis. This reveals, for the first time, different modes of binding on the chemically similar Au and Ag surfaces. Molecular simulations showed flatter configurations on Au and a greater variety of 3D adsorbed conformations on Ag, reflecting primarily enthalpically driven binding on Au and entropically driven binding on Ag. This may arise from differences in the interfacial solvent structure. On Au, direct interaction of peptide residues with the metal surface is dominant, while on Ag, solvent-mediated interactions are more important. Experimentally, AgBP1 is found to be selective for Ag over Au, while the other sequences have strong and comparable affinities for both surfaces, despite differences in binding modes. Finally, we show for the first time the impact of these differences on peptide mediated synthesis of nanoparticles, leading to significant variation in particle morphology, size, and aggregation state. Because the degree of contact with the metal surface affects the peptide's ability to cap the nanoparticles and thereby control growth and aggregation, the peptides with the least direct contact (AgBP1 and AgBP2 on Ag) produced relatively polydispersed and aggregated nanoparticles. Overall, we show that thermodynamically different binding modes at metallic interfaces can enable selective binding on very similar inorganic surfaces and can provide control over nanoparticle nucleation and growth. This supports the promise of bionanocombinatoric approaches that rely upon materials recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid advances in bionanotechnology have recently generated growing interest in identifying peptides that bind to inorganic materials and classifying them based on their inorganic material affinities. However, there are some distinct characteristics of inorganic materials binding sequence data that limit the performance of many widely-used classification methods when applied to this problem. In this paper, we propose a novel framework to predict the affinity classes of peptide sequences with respect to an associated inorganic material. We first generate a large set of simulated peptide sequences based on an amino acid transition matrix tailored for the specific inorganic material. Then the probability of test sequences belonging to a specific affinity class is calculated by minimizing an objective function. In addition, the objective function is minimized through iterative propagation of probability estimates among sequences and sequence clusters. Results of computational experiments on two real inorganic material binding sequence data sets show that the proposed framework is highly effective for identifying the affinity classes of inorganic material binding sequences. Moreover, the experiments on the structural classification of proteins (SCOP) data set shows that the proposed framework is general and can be applied to traditional protein sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a biological fibrous structure, silkworm cocoon provides multiple protective functionalities to safeguard the silk moth pupa’s metabolic activity. The mechanism of this protection could be adopted in clothing manufacture to provide more comfortable apparel. In this study, the thermal insulation properties of both domestic Bombyx mori (B. mori) and wild Antheraea pernyi (A. pernyi) cocoons were investigated under both warm and cold environmental conditions. Computational fluid dynamics models have been developed to simulate the heat transfer process through both types of cocoon wall structures. The simulation results show that the wild A. pernyi cocoon reduces the intensity of convection and heat flux between the environment and the cocoon interior and has higher wind resistance than its domestic counterpart. Compared with A. pernyi cocoon, the B. mori cocoon facilitates easy air transfer and decreases the temperature lag when the surrounding conditions are changed. The new knowledge has significant implications for developing biomimetic thermal functional materials.