92 resultados para Sodium Bicarbonate

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Sodium bicarbonate (NaHCO3) ingestion has been shown to increase both muscle glycogenolysis and glycolysis during brief submaximal exercise. These changes may be detrimental to performance during more prolonged, exhaustive exercise. This study examined the effect of NaHCO3 ingestion on muscle metabolism and performance during intense endurance exercise of ~60 min in seven endurance-trained men. Methods: Subjects ingested 0.3 g·kg-1 body mass of either NaHCO3 or CaCO3 (CON) 2 h before performing 30 min of cycling exercise at 77 ± 1% [latin capital V with dot above]O2peak followed by completion of 469 ± 21 kJ as quickly as possible (~30 min, ~80% [latin capital V with dot above]O2peak). Results: Immediately before, and throughout exercise, arterialized-venous plasma HCO3- concentrations were higher (P < 0.05) whereas plasma and muscle H+ concentrations were lower (P < 0.05) in NaHCO3 compared with CON. Blood lactate concentrations were higher (P < 0.05) during exercise in NaHCO3, but there was no difference between trials in muscle glycogen utilization or muscle lactate content during exercise. Reductions in PCr and ATP and increases in muscle Cr during exercise were also unaffected by NaHCO3 ingestion. Accordingly, exercise performance time was not different between treatments. Conclusion: NaHCO3 ingestion resulted in a small muscle alkalosis but had no effect on muscle metabolism or intense endurance exercise performance in well-trained men.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to determine the effect and reliability of acute and chronic sodium bicarbonate ingestion for 2000-m rowing ergometer performance (watts) and blood bicarbonate concentration [HCO3 -]. Methods: In a crossover study, 7 well-trained rowers performed paired 2000-m rowing ergometer trials under 3 double-blinded conditions: (1) 0.3 grams per kilogram of body mass (g/kg BM) acute bicarbonate; (2) 0.5 g/ kg BM daily chronic bicarbonate for 3 d; and (3) calcium carbonate placebo, in semi-counterbalanced order. For 2000-m performance and [HCO3 -], we examined differences in effects between conditions via pairwise comparisons, with differences interpreted in relation to the likelihood of exceeding smallest worthwhile change thresholds for each variable. We also calculated the within-subject variation (percent typical error). Results: There were only trivial differences in 2000-m performance between placebo (277 ± 60 W), acute bicarbonate (280 ± 65 W) and chronic bicarbonate (282 ± 65 W); however, [HCO3 -] was substantially greater after acute bicarbonate, than with chronic loading and placebo. Typical error for 2000-m mean power was 2.1% (90% confidence interval 1.4 to 4.0%) for acute bicarbonate, 3.6% (2.5 to 7.0%) for chronic bicarbonate, and 1.6% (1.1 to 3.0%) for placebo. Postsupplementation [HCO3 -] typical error was 7.3% (5.0 to 14.5%) for acute bicarbonate, 2.9% (2.0 to 5.7%) for chronic bicarbonate and 6.0% (1.4 to 11.9%) for placebo. Conclusion: Performance in 2000-m rowing ergometer trials may not substantially improve after acute or chronic bicarbonate loading. However, performances will be reliable with both acute and chronic bicarbonate loading protocols. ABSTRACT FROM AUTHOR

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Sodium bicarbonate (NaHCO3) is often ingested at a dose of 0.3 g/kg body mass (BM), but ingestion protocols are inconsistent in terms of using solution or capsules, ingestion period, combining NaHCO3 with sodium citrate (Na3C6H5O7), and coingested food and fluid. Purpose: To quantify the effect of ingesting 0.3 g/ kg NaHCO3 on blood pH, [HCO3 -], and gastrointestinal (GI) symptoms over the subsequent 3 hr using a range of ingestion protocols and, thus, to determine an optimal protocol. Methods: In a crossover design, 13 physically active subjects undertook 8 NaHCO3 experimental ingestion protocols and 1 placebo protocol. Capillary blood was taken every 30 min and analyzed for pH and [HCO3 -]. GI symptoms were quantified every 30 min via questionnaire. Statistics used were pairwise comparisons between protocols; differences were interpreted in relation to smallest worthwhile changes for each variable. A likelihood of >75% was a substantial change. Results: [HCO3 -] and pH were substantially greater than in placebo for all other ingestion protocols at almost all time points. When NaHCO3 was coingested with food, the greatest [HCO3 -] (30.9 mmol/kg) and pH (7.49) and lowest incidence of GI symptoms were observed. The greatest incidence of GI side effects was observed 90 min after ingestion of 0.3 g/kg NaHCO3 solution. Conclusions: The changes in pH and [HCO3 -] for the 8 NaHCO3-ingestion protocols were similar, so an optimal protocol cannot be recommended. However, the results suggest that NaHCO3 coingested with a high-carbohydrate meal should be taken 120-150 min before exercise to induce substantial blood alkalosis and reduce GI symptoms. ABSTRACT FROM AUTHOR

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Liver transplantation-associated acute kidney injury (AKI) carries significant morbidity and mortality. We hypothesized that sodium bicarbonate would reduce the incidence and/or severity of liver transplantation-associated AKI. METHODS: In this double-blinded pilot RCT, adult patients undergoing orthotopic liver transplantation were randomized to an infusion of either 8.4% sodium bicarbonate (0.5 mEq/kg/h for the first hour; 0.15 mEq/kg/h until completion of surgery); (n = 30) or 0.9% sodium chloride (n = 30). Primary outcome: AKI within the first 48 h post-operatively.RESULTS: There were no significant differences between the two treatment groups with regard to baseline characteristics, model for end-stage liver disease and acute physiology and chronic health evaluation (APACHE) II scores, and pre-transplantation renal function. Intra-operative factors were similar for duration of surgery, blood product requirements, crystalloid and colloid volumes infused and requirements for vasoactive therapy. Eleven patients (37%) in the bicarbonate group and 10 patients (33%) in the sodium chloride group developed a post-operative AKI (p = 0.79). Bicarbonate infusion attenuated the degree of immediate post-operative metabolic acidosis; however, this effect dissipated by 48 h. There were no significant differences in ventilation hours, ICU or hospital length of stay, or mortality. CONCLUSIONS: The intra-operative infusion of sodium bicarbonate did not decrease the incidence of AKI in patients following orthotopic liver transplantation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: The purpose of this investigation was to determine the effect of ingested caffeine, sodium bicarbonate, and their combination on 2,000-m rowing performance, as well as on induced alkalosis (blood and urine pH and blood bicarbonate concentration [HCO3 -]), blood lactate concentration ([La-]), gastrointestinal symptoms, and rating of perceived exertion (RPE). Methods: In a double-blind, crossover study, 8 well-trained rowers performed 2 baseline tests and 4 × 2,000-m rowing-ergometer tests after ingesting 6 mg/kg caffeine, 0.3 g/kg body mass (BM) sodium bicarbonate, both supplements combined, or a placebo. Capillary blood samples were collected at preingestion, pretest, and posttest time points. Pairwise comparisons were made between protocols, and differences were interpreted in relation to the likelihood of exceeding the smallest-worthwhile- change thresholds for each variable. A likelihood of >75% was considered a substantial change. Results: Caffeine supplementation elicited a substantial improvement in 2,000-m mean power, with mean (± SD) values of 354 ± 67 W vs. placebo with 346 ± 61 W. Pretest [HCO3 -] reached 29.2 ± 2.9 mmol/L with caffeine + bicarbonate and 29.1 ± 1.9 mmol/L with bicarbonate. There were substantial increases in pretest [HCO3 -] and pH and posttest urine pH after bicarbonate and caffeine + bicarbonate supplementation compared with placebo, but unclear performance effects. Conclusions: Rowers' performance in 2,000-m efforts can improve by ~2% with 6 mg/kg BM caffeine supplementation. When caffeine is combined with sodium bicarbonate, gastrointestinal symptoms may prevent performance enhancement, so further investigation of ingestion protocols that minimize side effects is required. ABSTRACT FROM AUTHOR

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ingestion of agents that modify blood buffering action may affect high-intensity performance. Here we present a meta-analysis of the effects of acute ingestion of three such agents - sodium bicarbonate, sodium citrate and ammonium chloride - on performance and related physiological variables (blood bicarbonate, pH and lactate). A literature search yielded 59 useable studies with 188 observations of performance effects. To perform the mixed- model meta-analysis, all performance effects were converted into a percentage change in mean power and were weighted using standard errors derived from exact p-values, confidence limits (CLs) or estimated errors of measurement. The fixed effects in the meta-analytic model included the number of performance-test bouts (linear), test duration (log linear), blinding (yes/no), competitive status (athiete/nonathlete) and sex (male/female). Dose expressed as buffering mmoL/kg/body mass (BM) was included as a strictly proportional linear effect interacted with all effects except blinding. Probabilistic inferences were derived with reference to thresholds for small and moderate effects on performance of 0.5% and 1.5%, respectively. Publication bias was reduced by excluding study estimates with a standard error >2.7%. The remaining 38 studies and 137 estimates for sodium bicarbonate produced a possibly mod- erate performance enhancement of 1.7% (90% CL ± 2.0%) with a typical dose of 3.5mmoL/kg/BM (-0.3g/kgIBM) in a single 1-minute sprint, following blinded consumption by male athletes. In the 16 studies and 45 estimates for sodium citrate, a typical dose of l.SmmoL/kgIBM (-0.5gIkgJBM) had an unclear effect on performance of 0.0% (±1.3%), while the five studies and six estimates for ammonium chloride produced a possibly moderate impairment of 1.6% (±1.9%) with a typical dose of 5.5mmoL/kgIBM (-0.3glkg/BM). Study and subject characteristics had the following modifying small effects on the enhancement of performance with sodium bicarbonate: an increase of 0.5% (±0.6%) with a 1 mmoL/kg/BM increase in dose; an increase of 0.6% (±0.4%) with five extra sprint bouts; a reduction of 0.6% (±0.9%) for each 10-fold increase in test duration (e.g. 1-10 minutes); reductions of 1.1% (± 1 .1%) with nonathletes and 0.7% (±1.4%) with females. Unexplained variation in effects between research settings was typically ± 1.2%. The only noteworthy effects involving physiological variables were a small correlation between performance and pre-exercise increase in blood bicarbonate with sodium bi- carbonate ingestion, and a very large correlation between the increase in blood bicarbonate and time between sodium citrate ingestion and exercise. The approximate equal and opposite effects of sodium bicarbonate and am- monium chloride are consistent with direct performance effects of pH, but sodium citrate appears to have some additional metabolic inhibitory effect. Important future research includes studies of sodium citrate ingestion several hours before exercise and quantification of gastrointestinal symptoms with sodium bicarbonate and citrate. Although individual responses may vary, we recommend ingestion of 0.3-0.5 glkg/BM sodium bicarbonate to improve mean power by 1.7% (±2.0%) in high-intensity races of short duration. ABSTRACT FROM AUTHOR

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction of evaporative ponds and wetlands for the disposal of waste water high in ionic concentrations is a waste disposal strategy currently considered by many industries. However, the design, construction and management of these ponds and wetlands are not straightforward as complex chemical interactions result in both spatial and temporal changes in water quality. The effects of evaporation and drainage on the water quality in two constructed ponds, an adjacent man-made wetland and local groundwater at Portland Aluminium were investigated. The minimum volume of water entering the ponds during the study period was 0.96±0.16 ML per month. The predicted theoretical evaporative capacity of the two ponds was calculated to be 0.30±0.07 ML per month. More water enters the ponds than it is theoretically possible to evaporate under the ambient weather conditions at Portland, yet the ponds do not overflow, suggesting percolation through the pond lining. No spatial differences in solute concentrations (fluoride, sulphate, bicarbonate, carbonate, sodium, potassium, calcium, and magnesium ions) were found within the waters of either pond, although temporal differences were apparent. The results support the conclusion that the ponds are not impermeable, and that much of the waste water entering the ponds is being lost through seepage. The impacts on local groundwater chemistry of this seepage are addressed. Significant correlations exist between solute presence within and between the ponds, wetland and groundwater. Fluoride and sulphate concentrations were significantly higher in pond waters throughout the duration of the experiment. Pond sediments revealed a high degree of spatial and temporal heterogeneity in the concentration of all monitored ions resulting from the chemical heterogeneity of the material making up the pond linings. Adsorption isotherms for fluoride indicate that the adsorption capacity of the pond linings remains high for this ion. Implications for the management of waste water by this strategy are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na+/H+ exchangers are integral membrane proteins that exchange Na+ and H+ across cell membranes. The Na+/H+ exchangers 2 and 3 are epithelial isoforms in mammals and contribute to acid–base homeostasis. The gills of fishes, including elasmobranchs, are also associated with acid/base balance, and are probably the primary acid/base regulatory organ. This study examines the presence of Na+/H+ exchangers 2 and 3 using immunohistochemistry and immunoblotting in the gills of four species of elasmobranchs, the banjo ray (Trygonorrhina fasciata), southern eagle ray (Myliobatis australis), the gummy shark (Mustelus antarcticus) and the Australian angel shark (Squatina australis) using heterologous antibodies. Na+/H+ exchanger 2-like immunoreactivity was observed in the gills of the banjo ray, eagle ray and angel shark. In the banjo and eagle rays, this Na+/H+ exchanger-like immunoreactivity co-localised with immunoreactivity to Na+/K+-ATPase, a marker for the mitochondrial-rich cells of fishes. Na+/H+ exchanger 3-like immunoreactivity was only observed in the gills of the angel and gummy sharks, some Na+/H+ exchanger 3-like cells also showed Na+/K+-ATPase immunoreactivity. However, immunoblotting of banjo and eagle ray gill membranes demonstrated Na+/H+ exchanger 3-like immunoreactivity, which was not consistent with the immunohistochemical results. These data demonstrate the presence of epithelial Na+/H+ exchangers 2 and 3 in the gills of elasmobranchs and a link with acid/base regulation is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-automated flow injection instrumentation, incorporating a small anion exchange column coupled with tris(2,2′-bipyridyl)ruthenium(II) (Ru(bipy)32+) chemiluminescence detection, was configured and utilised to develop rapid methodology for the determination of sodium oxalate in Bayer liquors. The elimination of both negative and positive interferences from aluminium(III) and, as yet, unknown concomitant organic species, respectively are discussed. The robustness of the methodology was considerably enhanced by using the temporally stable form of the chemiluminescence reagent, tris(2,2′-bipyridyl)ruthenium(III) perchlorate in dry acetonitrile. Real Bayer process samples were analysed and the results obtained compared well with those performed using standard methods within industrial laboratories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reducing dietary sodium reduces blood pressure (BP), a major risk factor for cardiovascular disease, but few studies have specifically examined the effect on BP of altering dietary sodium in the context of a high potassium diet. This randomized, crossover study compared BP values in volunteer subjects self-selecting food intake and consuming low levels of sodium (Na+; 50 mmol/d) with those consuming high levels of sodium (> or =20 mmol/d), in the context of a diet rich in potassium (K+). Sodium supplementation (NaSp) produced the difference in Na+ intake. Subjects (n = 108; 64 women, 44 men; 16 on antihypertensive therapy) had a mean age of 47.0 ± 10.1 y. Subjects were given dietary advice to achieve a low sodium (LS) diet with high potassium intake (50 mmol Na+/d, >80 mmol K+/d) and were allocated to NaSp (120 mmol Na+/d) or placebo treatment for 4 wk before crossover. The LS diet decreased urinary Na+ from baseline, 138.7 ± 5.3 mmol/d to 57.8 ± 3.8 mmol/d (P < 0.001). The NaSp treatment returned urinary Na+ to baseline levels 142.4 ± 3.7 mmol/d. Urinary K+ increased from baseline, 78.6 ± 2.3 to 86.6 ± 2.1 mmol/d with the LS diet and to 87.1 ± 2.1 mmol/d with NaSp treatment (P < 0.001). The LS diet reduced home systolic blood pressure (SBP) by 2.5 ± 0.8 mm Hg (P = 0.004), compared with the NaSp treatment. Hence, reducing Na+ intake from 140 to 60 mmol/d significantly decreased home SBP in subjects dwelling in a community setting who consumed a self-selected K+-rich diet, and this dietary modification could assist in lowering blood pressure in the general population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When aqueous sodium borohydride (50 mM) is added to a solution of potassium permanganate (1mM, in sodium hexametaphosphate) at acidic pH, bright red-orange emission is easily visible in a darkened room. This chemiluminescence emission is due to an excited state of manganese (II) that undergoes solution phase phosphorescence and provides an excellent opportunity for students to explore the relationship between the initial oxidation state of the manganese and the likelihood of luminescence. Not surprisingly Mn(VII), Mn(IV) and Mn(III) all give rise to chemiluminescence where as Mn(II) fails to react.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to study potential mixture interactions among bitter compounds, selected sodium salts were added to five compounds presented either alone or as binary bitter- ompound mixtures. Each compound was tested at a concentration that elicited ‘weak’ perceived bitterness. The bitter compounds were mixed at these concentrations to form a subset of possible binary mixtures. For comparison, the concentration of each solitary compound was doubled to measure bitterness inhibition at the higher intensity level elicited by the mixtures. The following sodium salts were tested for bitterness inhibition: 100 mM sodium chloride (salty), 100 mM sodium gluconate (salty), 100 and 20 mM monosodium glutamate (umami), and 50 mM adenosine monophosphate disodium salt (umami). Sucrose (sweet) was also employed as a bitterness suppressor. The sodium salts differentially suppressed the bitterness of compounds and their binary combinations. Although most bitter compounds were suppressed, the bitterness of tetralone was not suppressed, nor was the bitterness of the binary mixtures that contained it. In general, the percent suppression of binary mixtures of compounds was predicted by the average percent suppression of its two components. Within the constraints of the present study, the bitterness of mixtures was suppressed by sodium salts and sucrose independently, with few bitter interactions. This is consistent with observations that the bitter taste system integrates the bitterness of multi-compound solutions linearly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bitterness is an ongoing taste problem for both the pharmaceutical and food industries. This paper reports on how salts (NaCI, NaAcetate, NaGluconate, LiCI, KCI) and bitter compounds (urea, quinine-HCI, caffeine, amiloride-HCI, magnesium sulfate, KCI) interact to influence bitter perception. Sodium salts differentially suppress bitterness of these compounds; for example urea bitterness was suppressed by over 70% by sodium salts, while MgSO4 bitterness was not reduced. This study indicated that lithium ions had the same bitter suppressing ability as sodium ions, however the potassium cation had no bitter suppression ability. Changing the anion attached to the sodium did not affect bitter suppression, however, as the anion increased in size, perceived saltiness decreased. This indicates that sodium's mode of action is at the peripheral taste level, rather than a cognitive affect. A second experiment revealed that suppressing bitterness with a sodium salt in a bitter/sweet mixture causes an increase in sweetness. This suggests adding salt to a food matrix will not only increase salt perception, but also potentiate flavor by differential suppression of undesirable tastes such as bitter, while increasing more desirable tastes such as sweet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basic activated alumina with negatively charged surface is considered as a potential adsorbent for a targeted molecule with positive polarity. Adsorption of sodium by basic activated alumina was investigated as a method for desalting dairy waste streams, in which sodium ion concentration averaged 600 mg/L. Sodium equilibrium and kinetic adsorption were investigated using basic activated alumina with synthetic brines. The results of equilibrium adsorption show that uptake of sodium by activated alumina is significantly higher when the pH is greater than 8 and increases as the pH of the brines increases until pH reaches around 10. The results of kinetic adsorption show that 90 hours were needed to reach equilibrium for sodium adsorption. Binding and diffusion processes are suggested to have taken place within the activated alumina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background

Despite the importance of the sodium-restricted diet (SRD) to heart failure (HF) management, patient adherence is poor. Little is known about gender differences in adherence or factors that affect patients' ability to follow SRD recommendations. The purposes of this study were to determine whether there were gender differences in (1) adherence to the SRD; (2) knowledge about SRD and HF self-care; and (3) perceived barriers to following the SRD.
Methods and Results

Forty-one men and 27 women completed the Heart Failure Attitudes and Barriers questionnaire that measured HF self-care, knowledge, and perceived barriers to follow an SRD. Diet adherence was measured by 24-hour urinary sodium excretion (UNa). Women were more adherent to the SRD than men as reflected by 24-hour urine excretion (2713 versus 3859 mg UNa, P = .01). Women recognized signs of excess sodium intake such as fluid buildup (P = .001) and edema (P = .01) more often than men and had better understanding of appropriate actions to take related to following an SRD. There were no gender differences in perceived barriers to follow an SRD.
Conclusions

Although men and women perceived similar barriers, women were more adherent to the SRD and had greater knowledge about following an SRD. Further investigation of this phenomenon is warranted to determine if better adherence contributes to improved outcomes in women.