56 resultados para STATIONARY PHASES

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differences between alkyl, dipole–dipole, hydrogen bonding, and π-π selective surfaces represented by non-resonance and resonance π-stationary phases have been assessed for the separation of ‘Ristretto’ café espresso by employing 2DHPLC techniques with C18 phase selectivity detection. Geometric approach to factor analysis (GAFA) was used to measure the detected peaks (N), spreading angle (β), correlation, practical peak capacity (np) and percentage usage of the separations space, as an assessment of selectivity differences between regional quadrants of the two-dimensional separation plane. Although all tested systems were correlated to some degree to the C18 dimension, regional measurement of separation divergence revealed that performance of specific systems was better for certain sample components. The results illustrate that because of the complexity of the ‘real’ sample obtaining a truly orthogonal two-dimensional system for complex samples of natural origin may be practically impossible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multidimensional high-performance liquid chromatography separations of the complex sample matrix found in café espresso coffee were completed on the propyl phenyl and butyl phenyl columns that contain 3 and 4 carbon atoms in the spacer chain, respectively. Phenyl type stationary phases are able to undergo unique π–π interactions with aromatic compounds. Previous works have found that there are differences in retention characteristics between these chain lengths and this was explored further here. It was found that when analysing the separations by quadrants, using a geometric approach to factor analysis and by measuring the normalised mean radius, subtle differences in the separations were observed and the butyl phenyl phase was more selective for the high to medium polarity species. However, there was very little difference in separation behaviour for the hydrophobic components within the coffee sample. Overall, the analysis of the entire separation showed very little difference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C1 and phenyl-type stationary phases were assessed in terms of their environmental impact on separations using as test solutes polycyclic aromatic hydrocarbons. Methanol (MeOH) and acetonitrile (ACN) mobile-phase gradients were employed. These stationary phases were examined to determine if different physical and chemical properties possessed by these surfaces decreased the organic solvent consumption, and yet maintained peak capacity. The cumulative energy demand (CED) was used to gauge the environmental impact of the separations. The separation of the polycyclic aromatic hydrocarbon test mixture using current methodologies (i.e. a C18/ACN combination) had a CED of 1.13 MJ-eq, and a peak capacity of 27 peaks (resolving 7 of 12 peak pairs with Rs>1). In comparison, a butyl phenyl stationary phase with a methanol mobile phase had a peak capacity of 26, but with a CED of 0.670 MJ-eq. Monolithic columns containing C18 and C1 phases were also tested. A monolithic C18 column with MeOH had the lowest CED at 0.675 MJ-eq, a peak capacity of 28 peaks and good resolving power (resolving ten peak pairs with Rs>1), suggesting that this is a viable option with respect to reducing environmental impact for these types of analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute–solute interactions that are likely caused by π–π interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weight aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retention characteristics of phenyl type stationary phases for reversed phase high performance liquid chromatography are still largely unknown. This paper explores the retention process of these types of stationary phases by examining the retention behaviour of linear PAHs and n-alkylbenzenes on a series of propyl phenyl stationary phases that have changes in their ligand density (1.23, 1.31, 1.97, 2.50 μmol m−2). The aromatic and methylene selectivities increased with increasing ligand density until a point where a plateau was observed, overall the propyl phenyl phases had a higher degree of aromatic selectivity than methylene selectivity indicating that these columns are suitable for separations involving aromatic compounds. Also, retention characteristics relating to the size of the solute molecule were observed to be influenced by the ligand density. It is likely that the changing retention characteristics are caused by the different topologies of the stationary phases at different ligand densities. At high ligand densities, the partition coefficient became constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenyl type stationary phases of increasing spacer chain length (phenyl, methyl phenyl, ethyl phenyl, propyl phenyl and butyl phenyl, with 0–4 carbon atoms in the spacer chain, respectively) were synthesised and packed in house to determine the impact that the spacer chain length has on the retention process. Two trends in the aromatic selectivity, qaromatic, were observed, depending on whether the number of carbon atoms in the spacer chain is even or odd. Linear log k′ vs ϕ plots were obtained for each stationary phase and the S coefficient was determined from the gradient of these plots. For the phenyl type phases, the S vs nc plots of the retention factors of linear polycyclic aromatic hydrocarbons vs the number of rings exhibit a distinct discontinuity that between 3 and 4 rings, which increases with increasing spacer chain length for even phases but decreases for odd phases. Accordingly, we suggest that the retention factors depend differently on the number of carbon atoms in the spacer chain depending on whether this number is even or odd and that this effect is caused by different orientations of the aromatic ring relative to the silica surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenyl‐type stationary phase surfaces are useful for the separation of highly aromatic compounds because of the extensive intermolecular forces between the π‐electron systems. For this reason, we studied the retention behaviour and selectivity of polycyclic aromatic hydrocarbons (PAHs) on Synergi polar‐RP and Cosmosil 5PBB chromatography columns using methanol/water, acetonitrile/water, benzene spiked (0.5%) methanol/water, and benzene spiked (0.5%) acetonitrile/water mobile phases. These four solvent systems were employed because π‐π. interactions between the aromatic solute (i.e., PAH) and the aromatic stationary phase should be inhibited in mobile phases that are also π electron rich, and hence a competitor for the analyte. Our results showed that the acetonitrile mobile phases were substantially stronger eluents than the methanol mobile phases, which was consistent with the premise that retention of aromatic compounds is sensitive to π‐π. interactions. Aside from changes in absolute retention, selectivity of the PAHs was also generally greater in methanol rather than acetonitrile mobile phases because the methanol did not attenuate the π‐π. bonding interactions between the PAH and the stationary phase; but, despite this, the retention behaviour of the Synergi polar‐RP column was similar to that observed on C18 columns. The excessive retention times of the Cosmosil 5PBB column were decreased dramatically when acetonitrile was used as the mobile phase; however, selectivity between structural isomers was lost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The significant divergence between the retention of 16 terpene standards on porous graphitized carbon (PGC) and C18 packing materials are illustrated. The PGC surface is shown to provide a selectivity toward shape, polarity, and structure that is not afforded by the C18 surface. This observation is illustrated by plots of the retention factors similar to those typically used to represent 2D-HPLC separations. A geometric approach to factor analysis was used to measure the separation divergence together with the selectivity and the product selectivity factors of closely related species. When a methanol mobile phase was used with the PGC surface, a large fraction of the separation space could be utilized. That is further reflected by a spreading angle of 80.3°. The PGC material was also successful at resolving structural isomers where the C18 phase was not. It was also found that the choice of the mobile phase is important when using this material. A much larger degree of space utilization was seen with methanol than with acetonitrile that displayed a spreading angle of only 40.8°.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mixed mode stationary phases utilize secondary retention mechanisms to add a dimensionality to the surface of high performance liquid chromatography (HPLC) adsorbents. This approach was used by several authors to improve the separation performance of single dimension separations. We explored the magnitude of these secondary interactions by performing an off-line two-dimensional (2D)-HPLC separation with a Scherzo SM-C18 column of a β-lactoglobulin tryptic digest with a mobile phase pH of 7 in the first dimension and 2 in the second. Mechanism divergence was determined using the peak capacity and a geometric approach to factor analysis, to measure the correlation. This separation was repeated with a C18 stationary phase as a control. It was found that the C18 column had a correlation coefficient of 0.784, smaller than the mixed mode column, 0.884. This indicated that the retention mechanisms of the C18 column were more divergent under these two pH environments than the mixed mode column. However, the SM-C18 still provided alternative selectivity of the peptides to that of the C18 and could be considered as a good alternative for further 2D-HPLC separations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metabolite profiling, HPLC, LC-QTOF-MS, GC-MS. A workflow will be presented for comprehensive metabolomics using LC- and GC-MS. Metabolomics is an emerging field in the suite of ‘omic’ approaches for Systems Biology. The goal of metabolomics is to detect the presence of all small-molecules in a biological sample. This presents a significant challenge due to the chemical diversity and large concentration range of metabolites. Currently, there is no single method which enables the entire metabolome to be analysed, therefore a suite of analytical approaches are required to increase the coverage of detected metabolites. The routinely used techniques for metabolite profiling are LC- and GC-MS and NMR. Here we present complementary approaches using MS hyphenated to different chromatographic techniques. GC-MS represent the most robust standardised technique for high throughput metabolite profiling however there are still no standard LC-based methods for profiling. Polar compounds represent the most challenging aspect of LC-based metabolomics. A robust chromatographic technique for profiling polar compounds using HILIC chromatography and QTOF-MS will be presented as well as the complimentary reverse phase LC-MS method. The polar separation was carried out using a diamond hydride column. This unique stationary phase provides stable retention times and fast re-equilibration which contrasts to other forms of HILIC stationary phases. These LC-based methods will be compared to the well established GC-MS method as well as NMRbased profiling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High performance liquid chromatography (HPLC) is an enabling science with application in all scientific disciplines requiring analysis or purification. The research described here details performance aspects of the chromatography column, which lead to a new design concept in the chromatography column. Studies were also undertaken to characterise selectivity leading to new stationary phases. Research on fluid dynamics in packed beds showed how a mismatch in solvent viscosities between the injection plug and mobile pahse influences the performance of on-line multidimentional HPLC. Selectivity id detection was also examined in an effort to better understand sample analysis. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The selection of two high performance liquid chromatography (HPLC) columns with vastly different retention mechanisms is vital for performing effective two-dimensional (2D-) HPLC. This paper reports on a systematic method to select a pair of HPLC columns that provide the most different separations for a given sample. This was completed with the aid of a HPLC simulator that predicted retention profiles on the basis of real experimental data, which is difficult when the contents of sample matrices are largely-or completely-unknown. Peaks from the same compounds must first be matched between chromatograms to compare the retention profiles and optimised 2D-HPLC column selection. In this work, two methods of matching peaks between chromatograms were explored and an optimal pair of chromatography columns was selected for 2D-HPLC. First, a series of 17 antioxidants were selected as an analogue for a coffee extract. The predicted orthogonality of the standards was 39%, according to the fractional surface coverage 'bins' method, which was close to the actual space utilisation of the standard mixture, 44%. Moreover, the orthogonality for the 2D-HPLC of coffee matched the predicted value of 38%. The second method employed a complex sample matrix of urine to optimise the column selections. Seven peaks were confidently matched between chromatograms by comparing relative peak areas of two detection strategies: UV absorbance and potassium permanganate chemiluminescence. It was found that the optimal combinations had an orthogonality of 35% while the actual value was closer to 30%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Liquid chromatography–mass spectrometry (LC–MS) methods using either aqueous normal phase (ANP) or reversed phase (RP) columns are routinely used in small molecule or metabolomic analyses. These stationary phases enable chromatographic fractionation of polar and non-polar compounds, respectively. The application of a single chromatographic stationary phase to a complex biological extract results in a significant proportion of compounds which elute in the non-retained fraction, where they are poorly detected because of a combination of ion suppression and the co-elution of isomeric compounds. Thus coverage of both polar and non-polar components of the metabolome generally involves multiple analyses of the same sample, increasing the analysis time and complexity. In this study we describe a novel tandem in-line LC–MS method, in which compounds from one injection are sequentially separated in a single run on both ANP and RP LC-columns. This method is simple, robust, and enables the use of independent gradients customized for both RP and ANP columns. The MS signal is acquired in a single chromatogram which reduces instrument time and operator and data analysis errors. This method has been used to analyze a range of biological extracts, from plant and animal tissues, human serum and urine, microbial cell and culture supernatants. Optimized sample preparation protocols are described for this method as well as a library containing the retention times and accurate masses of 127 compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The selection of two orthogonal columns for two-dimensional high performance liquid chromatography (LC×LC) separation of natural product extracts can be a labour intensive and time consuming process and in many cases is an entirely trial-and-error approach. This paper introduces a blind optimisation method for column selection of a black box of constituent components. A data processing pipeline, created in the open source application OpenMS®, was developed to map the components within the mixture of equal mass across a library of HPLC columns; LC×LC separation space utilisation was compared by measuring the fractional surface coverage, fcoverage. It was found that for a test mixture from an opium poppy (Papaver somniferum) extract, the combination of diphenyl and C18 stationary phases provided a predicted fcoverage of 0.48 and was matched with an actual usage of 0.43. OpenMS®, in conjunction with algorithms designed in house, have allowed for a significantly quicker selection of two orthogonal columns, which have been optimised for a LC×LC separation of crude extractions of plant material.