70 resultados para Polymer materials

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The conventional approach ie laboratory life testing to examine the reliability of products takes long time and involves tremendous cost as samples are tested till failures. The accelerated life test (ALT) has recently been used as an alternative method. Although ALT reduces the cost of reliability testing through applying more severe environmental conditions than the normal ones, it is no longer sufficient as it does not describe the process of products’ failure explicitly and it is still highly dependent on physical testing. Consequently, novel practices need to be developed for better understanding of the products’ reliability. A novel Finite Element Analysis (FEA) model incorporating mathematical wear equations is developed in the current work and applied to polymer materials. Wear rate, a key parameter, is calculated by using a combinatorial formula that combines a conventional linear equation with a recently published exponential equation. The local wear is firstly calculated and then integrated over the sliding distance. The FEA simulation works in a loop and performs a series of simulation with updated surface geometries. The simulation is in good agreement with the physical testing result.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, successful methods have been established to retain the ordered nanostructures in polymer materials templated from hexagonal lyotropic liquid crystals, which potentially renders broad applications as biomedical and membrane materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work investigates the material birefringence in a polymer strip waveguide which originates from thermal stress during the fabrication process. The stress is estimated through a comprehensive numerical study based on a realistic finite element model. The characteristics of birefringence are obtained in a generalized form and expressed by an empirical formula, which is applicable to various polymer materials. The developed formula can be employed to specify the photo-elastic birefringence of a polymer strip channel only by knowing the birefringence in its planar film. This will eliminate the necessity of extensive numerical analysis of thermal stress in such polymer waveguides, and accordingly help the management of stress-induced effects efficiently.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An accurate kinetics model is essential for understanding the curing mechanism and predicting the end properties of polymer materials. Graphite/epoxy AS4/ 8552 prepreg is a recent high-performance thermosetting composite modified with thermoplastic, which is being used in the manufacture of aircraft and military structures. The isothermal cures of this system along with another thermoplastic toughened high-performance prepreg, the T800H/3900-2 system, were investigated by real-time Fourier transform infrared (FTIR) spectroscopy. The cure rate was quantitatively analyzed based on the concentration profiles of both the epoxy and primary amine groups. Three autocatalytic models were used to determine kinetics parameters for both composite systems. The model which utilizes an empirical term, the final relative conversion (at different isothermal curing temperatures), describes the experimental data of both systems more satisfactorily than the model which applies a diffusion factor. The modeling results suggest that the curing of epoxy within both prepregs can be assumed to be a second order process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the intensity of UV radiation increases every year, effective methods to block UV rays to protect human skin, plastics, timber and other polymer materials are urgently sought. Textiles serve as important materials for UV protection in many applications. The utilisation of nanoparticles to textile materials has been the object of several studies aimed at producing finished fabrics with different performances. This article reviews the recent advancement in the field of UV blocking textiles and fibers that are functionalised with nanostructured surface coatings. Different types of UV blocking agents are discussed and various examples of UV blocking textiles utilising ZnO and TiO2 are presented. Future challenges such as wash-fastness and photocatalysis are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrospinning technique has attracted a lot of interests recently, although it was invented in as early as 1934 by Anton (Anton, 1934). A basic electrospinning setup normally comprises a high voltage power supply, a syringe needle connected to power supply, and a counter-electrode collector as shown in Fig. 1. During electrospinning, a high electric voltage is applied to the polymer solution, which highly electrifies the solution droplet at the needle tip (Li & Xia, 2004). As a result, the solution droplet at the needle tip receives electric forces, drawing itself toward the opposite electrode, thus deforming into a conical shape (also known as “Taylor cone” (Taylor, 1969)). When the electric force overcomes the surface tension of the polymer solution, the polymer solution ejects off the tip of the “Taylor cone” to form a polymer jet. The charged jet is stretched by the strong electric force into a fine filament. Randomly deposited dry fibers can be obtained on the collector due to the evaporation of solvent in the filament. There are many factors affecting the electrospinning process and fiber properties, including polymer materials (e.g. polymer structure, molecular weight, solubility), solvent (e.g. boiling point, dielectric properties), solution properties (e.g. viscosity, concentration, conductivity, surface tension), operating conditions (e.g. applied voltage, collecting distance, flow rate), and ambient environment (e.g. temperature, gas environment, humidity).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have examined a range of new and previously described flow cells for chemiluminescence detection. The reactions of acidic potassium permanganate with morphine and amoxicillin were used as model systems representing the many fast chemiluminescence reactions between oxidising agents and organic analytes, and the preliminary partial reduction of the reagent was exploited to further increase the rates of reaction. The comparison was then extended to high-performance liquid chromatography separations of α- and β-adrenergic agonists, with permanganate chemiluminescence detection. Flow cells constructed by machining novel channel designs into white polymer materials (sealed with transparent films or plates) have enabled improvements in mixing efficiency and overall transmission of light to the photodetector.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal resistance is one of the most dominative properties for polymer materials. Thermal degradation mechanisms of epoxidized natural rubber (ENR) and NR are studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results show that, the introduction of epoxy groups into the NR molecular main chain leads to a remarkable change in the degradation mechanism. The thermal stability of ENR is worse than that of NR. For the first thermooxidative degradation stage, the thermal decomposition mechanism of ENR is similar to that of NR, which corresponds to a mechanism involving one-dimensional diffusion. For the second stage, the thermal decomposition mechanism of ENR is a three-dimensional diffusion, which is more complex than that of NR. Kinetic analysis showed that activation energy (E?), activation entropy (?H) and activation Gibbs energy (?G) values are all positive, indicating that the thermooxidative degradation process of ENR is non-spontaneous.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis addresses an important issue in polymer materials science, the toughening of thermosetting polymers. A novel approach has been developed, i.e., the use of block ionomers/complexes to promote compatibilization with thermosetting epoxies. The morphology and mechanical properties of the resulting nanostructured epoxies were intensively studied to establish structure-property correlation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, shell powder was modified by sodium stearate surface modifier for improving the compatibility of SP with polymer materials. The surface modifiers influence on the physical and chemical properties of SP were studied by scanning electron microscope(SEM), fourier infrared spectrum(FT-IR), surface contact angle meter, XRD diffraction analysis meter and other modern instruments and analysis method. The results showed that the surface modifier was successfully coupled to the shell powder surface. After surface modifier modification, the interfacial compatibility of the shell powder with polymer materials was effectively improved. The contact angle of shell powder surface increased from 73.5 ° to 110.8 °, along with the dosage of sodium stearate surface modifier was 4.0%. All results suggested that modified shell powder is promising for using as a reinforcement filler in polymer materials. © (2014) Trans Tech Publications, Switzerland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanofibers possess high surface area and excellent porosity. Though nanofibers can be produced by a variety of techniques, electrospinning stands distinct because of its simplicity and flexibility in processing different polymer materials, and ability to control fiber diameter, morphology, orientation, and chemical component. Nonetheless, electrospun nanofibers are predominantly produced in the form of randomly oriented fiber webs, which restrict their wide use. Converting nanofibers into twisted continuous bundles, i.e., nanofiber yarns, can improve their strength and facilitate their subsequent processes, but remains challenging to make. Nanofiber yarns also create enormous opportunities to develop well-defined three-dimensional nanofibrous architectures. This review article gives an overview of the state-of-the-art techniques for electrospinning of nanofiber yarns and control of nanofiber alignment. A detailed account on techniques to produce twisted/non-twisted short bundles and continuous yarns are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel conducting polymer/non-conducting polymer composite (PEDOT/PEG), produced by vapor phase polymerization of PEDOT in the presence of PEG, shows stable electrocatalytic reduction of protons to hydrogen with conversion currents and over-potential comparable to platinum. The swelling of the composite by PEG and especially its ability to coordinate protons seems to be essential for the catalytic activity of the composite.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conducting polymer based electrochromic devices were assembled with various ionic liquid (IL) based electrolytes to probe the role of the ion structure on electrochromic performance. When the IL contained the same anion as the dopant ion used in the conducting polymers an enhanced electrochromic performance was observed providing high photopic contrast at low applied potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is supposed that there should be a thermal electric effect if a dc current is applied across two dissimilar conducting polymers, similar to so called “Peltier effect” in metals or semiconductors. However, this hypothesis has not been tested on conducting polymers and using these materials to make cooling fabrics has never been attempted before. Polypyrrole coated fabrics were used to test the hypothesis in this preliminary study. Seebeck and the Peltier effects were proven to exist. However, thermoelectricity effect between two conducting polymer coated fabric samples was only about 10 μV/°C. Cooling effect by conductive polymer powder was achieved but performance was unsteady due to electrical degradation of the conducting polymer. Nevertheless, the concept was demonstrated and the development of a cooling fabric is possible.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of temperature on the forming behavior of an aluminum/polypropylene/aluminum (APA) sandwich sheet was studied. Shear and tensile tests were performed to determine the mechanical properties of the laminate and the component materials as a function of process temperature. The forming limit diagram (FLD) of the laminate was established for two different temperatures, and its springback behavior was examined in four-point bend and channel bend tests. Cup forming tests were performed at various test temperatures to determine the limiting drawing ratio (LDR) and the tendency for wrinkling at these temperatures. Although there was only a minor influence of temperature on the mechanical properties and the FLD values of the laminate, the bend test results reveal that springback can be reduced by forming at higher temperature. The decreasing strength of the core material with rising process temperature led to an increased tendency of the laminate to wrinkle in the heated cup drawing tests.