23 resultados para Particle lattice effect

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An Al6061-20%Al2O3 powder metallurgy (PM) metal matrix composite (MMC) with a strongly clustered particle distribution is subjected to equal channel angular pressing (ECAP) at a temperature of 370 °C. The evolution of the homogeneity of the particle distribution in the material during ECAP is investigated by the quadrat method. The model proposed by Tan and Zhang [Mater Sci Eng 1998;244:80] for estimating the critical particle size which is required for a homogeneous particle distribution in PM MMCs is extended to the case of a combination of extrusion and ECAP. The applicability of the model to predict a homogeneity of the particle distribution after extrusion and ECAP is discussed. It is shown that ECAP leads to an increase of the  uniformity of the particle distribution and the fracture toughness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, a three-stage process consisting of mechanical milling, heat treatment, and washing has been used to manufacture nanoparticulate ZnO powders with a controlled particle size and minimal agglomeration. By varying the temperature of the post-milling heat treatment, it was possible to control the average particle size over the range of 28–57 nm. The photocatalytic activity of these powders was characterized by measuring the hydroxyl radical concentration as a function of irradiation time using the spin-trapping technique with electron paramagnetic resonance spectroscopy. It was found that there exists an optimum particle size of approximately 33 nm for which the photocatalytic activity is maximized. The existence of this optimal particle size is attributable to an increase in the charge carrier recombination rate, which counteracts the increased activity arising from the higher specific surface area for a sufficiently small particle size.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of carbide precipitates with a size range of 30–300 nm on the austenite to martensite transformation has been studied. Such particles are known to enhance shape memory, and it was the aim of this work to clarify how the particles exert a favourable effect on shape memory. Differential scanning calorimetry revealed that the presence of particles increases the amount of thermally induced martensite. X-ray diffraction showed that the presence of particles increases the amount of stress-induced martensite also. Surface-relief produced on a pre-polished surface by bending deformation showed that the particle-containing samples exhibited a more complex and highly tilted surface-relief indicative of the formation of a larger volume fraction of martensite. The reversion characteristics of the particle-containing and solution-treated samples were similar: both showed co-reversion of multiple variants of martensite within the same volume of microstructure. However, a higher volume fraction of martensite reverted for the particle-containing sample on recovery annealing. The increased density of nucleation sites for martensite formation and a higher volume fraction of stress-induced martensite for a given strain are therefore considered to be the main contributions of relatively coarse carbide particles to the improvement of shape memory performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nano-particle oxide fillers including TiO2, SiO2 and Al2O3 have previously been shown to have a significant affect on the properties of polymer electrolytes, especially those based on polyether–lithium salt systems. In some cases, conductivity increases of more than one order of magnitude have been reported in crystalline PEO-based complexes. In this work, we report on the effects of TiO2 on a completely amorphous polyether-based system to remove the complication of multiple phases presented by the semi-crystalline nature of PEO. Multinuclear magnetic resonance spectroscopy has shown that the lithium ion environment is changed by the addition of filler. Vibrational spectroscopy shows that the filler influences the disordered-longitudinal acoustic modes (DLAM) in the case of an amorphous polyether and suggests an interaction between the filler surface and the polymer. Positron annihilation lifetime spectroscopy indicates an increase in free volume upon addition of filler to an amorphous polyether–salt complex, coinciding with an apparent increase in polymer mobility as determined from 1H T2 NMR measurements. Impedance spectroscopy has shown clear evidence of an inter-phase region that may be more or less conductive than the bulk polymer electrolyte itself. The data support a model which includes conduction through an interfacial region in addition to the bulk polymer

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The specific wear rate and friction coefficient of a pearlitic microstructure subjected to different abrasive environments (i.e. SiC and alumina) were examined. A CSM high temperature pin-on-disc tribometer was used to simulate the two-body abrasive condition (i.e. the metallic surface abrading against the abrasive particles). The characteristics of the abrasive particles (i.e. particle size and density) revealed a significant impact on the amount of material loss. The specific wear rate of the pearlitic microstructure decreased with a reduction in the abrasive particle size, irrespective of the particle type. In addition, distinct particle deterioration mechanisms were observed during the abrasion process, which was largely determined by the abrasive particle size. Attrition, shelling and fracture were some of the dominant particle deterioration mechanisms occurring in both of the abrasive environments. SEM and EDX analysis on the wear debris displayed a unique metallic chip formation with respect to the particle type. Furthermore, the abrading efficiency (i.e. threshold level) of the abrasive particles was identified by means of interrupted abrasive wear tests. The dense packing nature of the alumina abrasive particles resulted in a significantly higher material removal rate than the SiC abrasive environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The shape memory behaviour of two Fe–Mn–Si-based alloys has been investigated. One alloy was a reference alloy, and the other alloy was
similar in composition except that it contained 0.55 wt% Ti. Following solution treatment and quenching, strip samples were subjected to three types
of treatments; isothermal holding, cold rolling followed by isothermal holding, and hot rolling followed by isothermal holding. These treatments
resulted in the formation of intermetallic precipitates in the Ti-containing alloy, while the reference alloy remained precipitate-free. In comparing
the shape memory of the reference and the particle-containing alloy after identical heat treatments, it was found that the formation of precipitates
had a beneficial effect on the shape memory in all cases. In general, the larger precipitates caused a larger increase in the shape memory. The effect
of particle size on shape memory has been analysed using the current data and published results for a range of precipitate types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C60 has been shown to give increased sputter yields and, hence, secondary ions when used as a primary particle in SIMS analysis. In addition, for many samples, there is also a reduction in damage accumulation following continued bombardment with the ion beam. In this paper, we report a study of the impact energy (up to 120 keV) of C60 on the secondary ion yield from a number of samples with consideration of any variation in yield response over mass ranges up to m/z 2000. Although increased impact energy is expected to produce a corresponding increase in sputter yield/rate, it is important to investigate any increase in sample damage with increasing energy and, hence, efficiency of the ion beams. On our test samples including a metal, along with organic samples, there is a general increase in secondary ion yield of high-mass species with increasing impact energy. A corresponding reduction in the formation of low-mass fragments is also observed. Depth profiling of organic samples demonstrates that when using C60, there does not appear to be any increase in damage evident in the mass spectra as the impact energy is increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To realise the battery potential of gel polyelectrolytes greater ion dissociation, ultimately leading to higher conductivities, must be achieved. Higher conductivities will result through increasing the ion-dissociating properties of the gel polyelectrolyte. The poor degree of ion dissociation arises as the active ion tends to remain in close proximity to the backbone charge. Nano-particle inorganic oxides, and zwitterionic compounds have been shown to act as dissociation enhancers in certain polyelectrolyte systems. In an attempt to further increase ion dissociation the addition of both TiO2 nano-particles and a zwitterionic compound based on 1-butylimidazolium-3-N-(butanesulphonate) were added to the gel polyelectrolyte system poly (Li-2-acrylamido-2-methyl-1-propane sulphonate-co-N,N′-dimethylacrylamide), poly(Li-AMPS-co-DMAA) to determine if a synergistic effect occurs. Two different solvents were used to determine the breadth of applicability of the additive effect. The use of both dissociators resulted in the maximum ionic conductivity being achieved at lower nano-particle concentrations when compared to an identical system without zwitterion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particle-containing silica sol was synthesized by co-hydrolysis and co-condensation of two silane precursors, tetraethylorthosilicate (TEOS) and an organic silane composed of a non-hydrolyzable functional group (e.g., alkyl, flourinated alkyl, and phenyl), and used to produce superhydrophobic coatings on fabrics. it has been revealed that the non-hydrolyzable functional groups in the organic silanes have a considerable influence on the fabric surface wettability. When the functional group was long chain alkyl (C16), phenyl, or flourinated alkyl (C8), the treated surfaces were highly superhydrophobic with a water contact angle (CA) greater than 170°, and the CA value was little affected by the fabric type. The washing durability of the superhydrophobic coating was improved by introducing the third silane containg epoxide group, 3-glycidoxypropyltrimethoxsilane (GPTMS), for synthesis. Although the presence of epoxide groups in the coating slightly reduced the fabrics' superhydrophobicity, the washing durability was considerably improved when polyester and cotton fabrics were used as substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigates the effect of nanosized Al2O3 addition on the sinterability of YSZ electrolyte. (1-x)YSZ + Al2O3 ceramics with compositions x = 0 to 0.01 were prepared by the conventional mixed oxide route from a commercial powder suspension (particle size <50 nm), and sintered at 1200 to 1500 degrees C for 2 hours in air. Densification, phase evolution, and microstructure were characterized by SEM/EDS and XRD. An improvement in sintered density was observed for the samples with 0.2 to 0.5 mol% Al2O3, though depending on the sintering temperature. Only cubic zirconia was detected as crystalline phase, although XRD features suggested chemical interactions depending upon the amount of Al2O3. The grain size of YSZ was homogeneous and no second phase segregation was detected in the tested range of incorporated nano-Al2O3 and sintering temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study we expand our analysis of using two contrasting organic solvent additives (toluene and THF) in an ionic liquid (IL)/Li NTf 2 electrolyte. Multinuclear Pulsed-Field Gradient (PFG) NMR, spin-lattice (T1) relaxation times and conductivity measurements over a wide temperature range are discussed in terms of transport properties and structuring of the liquid. The conductivity of both additive samples is enhanced the most at low temperatures, with THF slightly more effective than toluene. Both the anion and lithium self-diffusivity are enhanced in the same order by the additives (THF > toluene) while that of the pyrrolidinium cation is marginally enhanced. 1H spin-lattice relaxation times indicate a reasonable degree of structuring and anisotropic motion within all of the samples and both 19F and 7Li highlight the effectiveness of THF at influencing the lithium coordination within these systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Total immunoglobulin A in saliva (s-IgA) is normally assayed using an enzyme-linked immunosorbent assay. We have investigated methodological issues relating to the use of particle-enhanced nephelometric immunoassay (PENIA)
to measure s-IgA in whole unstimulated saliva and determine its reference range.

Methods: Whole unstimulated resting saliva was collected to determine sample stability (temperature, time, effect of a protease inhibitor), limit of quantitation (LOQ), assay precision and analytical variation. The reference range for 134 healthy adults was determined.

Results: Linearity was excellent (4–10.3 mg L21, P, 0.001; R2 ¼ 0.997) and without significant bias (mean of 20.7%). The lowest intra- and inter-analytical coefficients of variation were 1.8% and 7.5% and LOQ was 1.4 mg L21. The concentration of s-IgA is stable at room temperature for up to 6 h, at 48C for 48 h, at 248C for two weeks and at 2808C for up to 1.3 yr. There is no evidence that a protease inhibitor increases the stability or that repeated freeze–thawing cycles degrade sample quality. The reference ranges for s-IgA concentration, s-IgA secretion, s-IgA:albumin and s-IgA:osmolality were 15.9–414.5 mg L21, 7.2–234.9 mg min21, 0.4–19 and 0.6–8.9, respectively.

Conclusion:
Automated PENIA assay of s-IgA is precise and accurate. High stability of collected saliva samples and the ease and speed of the assay make this an ideal method for use in athletic and military training situations. The convenience of measuring albumin and IgA on the same analytical platform adds to the practicability of the test.