4 resultados para PRISTANE-INDUCED ARTHRITIS

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim

This study aimed to evaluate the antiarthritic and chondroprotective potentials of Lakshadi Guggul (LG) and Cissus quadrangularis encapsulated in novel alginate-enclosed chitosan-calcium phosphate nanocarriers (NCs) both in vitro in primary human chondrocytes and in vivo in mice with collagen-induced arthritis.

Materials & methods:
Chondrocytes exposed to IL-1beta and osteoarthritis chondrocytes grown in an ex vivo inflammation-based coculture were incubated with different concentrations of herbals, and cell modulatory activities were determined. For in vivo studies, herbals and their encapsulated nanoformulations were administered orally to DBA/1 mice with collagen-induce arthritis.

Results:
C. quadrangularis and LG showed enhanced chondroprotective and proliferative activity in IL-1beta-exposed primary chondrocytes, with LG showing the highest therapeutic potency. LG increased viability, proliferative and mitogenic activity, and inhibited cell apoptosis and mitochondrial depolarization. In vivo studies with LG and alginate-enclosed chitosan-calcium phosphate LG NCs revealed cartilage regenerative activity in those administered with the nanoformulation. The NCs were nontoxic to mice, reduced joint swelling and paw volume, and inhibited gene expression of MMPs and cytokines.

Conclusion:
The promising results from this study reveal, for the first time, the novel polymeric NC encapsulating LG as a potential therapeutic for rheumatic diseases. Original submitted 10 October 2013; Revised submitted 13 December 2013.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, the therapeutic potentials of 100% iron saturated-bovine lactoferrin encapsulated in alginate-chitosan polymeric nanocarriers (AEC-CP-Fe-bLf-NCs) were examined in in vitro inflammatory OA model and in collagen-induced arthritis (CIA) mice. Oral administration of nanocarriers in mice were non-toxic and significantly induced disease modifying activity by reducing joint inflammation and downregulating the expression of catabolic genes, IL-1β, NO, JNK and MAPK. In addition, up-regulation of type II collagen, aggrecan and inflammation depleted iron and calcium metabolisms via inhibition of miRNA of iron transporting receptors was shown in AEC-CP-Fe-bLf-NCs treated mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to its severity and increasing epidemiology, arthritis needs no description. There are various forms of arthritis most of which are disabling, very painful, and common. In spite of breakthroughs in the field of drug discovery, there is no cure for arthritis that can eliminate the disease permanently and ease the pain. The present review focuses on some of the most successful drugs in arthritis therapy and their side effects. Potential new targets in arthritis therapy such as interleukin-1β, interleukin-17A, tumor necrosis factor alpha, osteopontin, and several others have been discussed here, which can lead to refinement of current therapeutic modalities. Mechanisms for different forms of arthritis have been discussed along with the molecules that act as potential biomarkers for arthritis. Due to the difficulty in monitoring the disease progression to detect the advanced manifestations of the diseases, drug-induced cytotoxicity, and problems with drug delivery; nanoparticle therapy has gained the attention of the researchers. The unique properties of nanoparticles make them highly attractive for the design of novel therapeutics or diagnostic agents for arthritis. The review also focuses on the recent trends in nanoformulation development used for arthritis therapy. This review is, therefore, important because it describes the relevance and need for more arthritis research, it brings forth a critical discussion of successful drugs in arthritis and analyses the key molecular targets. The review also identifies several knowledge gaps in the published research so far along with the proposal of new ideas and future directions in arthritis therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anti-inflammatory effect of a lipid extract from hard-shelled mussel (HMLE) on dextran sulphate sodium (DSS)-induced colitis in mice was investigated. Salicylazosulphapyridine (SASP) and different doses of HMLE were administered by gastric gavage. HMLE significantly attenuated DSS-induced colitis disease activity index scores, tissue damage, splenic enlargement and colon myeloperoxidase accumulation. In addition, HMLE improved colon oxidative stress and production and expression of anti-inflammatory cytokine, interleukin (IL)-10, while HMLE inhibited the abnormal productions and mRNA expressions of pro-inflammatory cytokines, namely tumour necrosis factor-α, IL-1β, and IL-6, as well as the expression of key molecules in the toll-like receptor (TLR)-4/nuclear factor (NF)-κB signalling pathway. These findings suggest that HMLE has an anti-inflammatory effect on DSS-induced colitis, equivalent to that of SASP, and this effect might be related to the regulation of inflammatory mediators and key molecules in the TLR-4/NF-κB pathway.