4 resultados para POTASSIUM-ION

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behaviour of a Sn-based anode in a potassium cell is reported for the first time. The material is active at low potentials vs. K/K(+), and encouraging capacities of around 150 mA h g(-1) are recorded. Experimental evidence shows that Sn is capable of alloying/de-alloying with potassium in a reversible manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a dual chemiluminescence reagent for the determination of the opiate alkaloids morphine, codeine, oripavine, and thebaine in Papaver somniferum extracts. Detection was achieved using a mixture of acidic potassium permanganate and tris(2,2′-bipyridyl)ruthenium(ii), where the former acted as both the oxidant for the latter and as a chemiluminescence reagent in its own right. The analytes were separated on a C8 column using ion-pairing HPLC. The application of the mixed reagent detection compared favourably with results obtained using standard HPLC methodology. Detection limits for the alkaloids were 10-6, 5 × 10-7, 3 × 10-6, and 2 × 10-6 mol L-1 for morphine, codeine, oripavine, and thebaine, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Programmed cell death (PCD), is a highly regulated and sophisticated cellular mechanism that commits cell to isolated death fate. PCD has been implicated in the pathogenesis of numerous neurodegenerative disorders. Countless molecular events underlie this phenomenon, with each playing a crucial role in death commitment. A precedent event, apoptotic volume decrease (AVD), is ubiquitously observed in various forms of PCD induced by different cellular insults. Under physiological conditions, cells when subjected to osmotic fluctuations will undergo regulatory volume increase/decrease (RVI/RVD) to achieve homeostatic balance with neurons in the brain being additionally protected by the blood-brain-barrier. However, during AVD following apoptotic trigger, cell undergoes anistonic shrinkage that involves the loss of water and ions, particularly monovalent ions e.g. K+, Na+ and Cl-. It is worthwhile to concentrate on the molecular implications underlying the loss of these cellular components which posed to be significant and crucial in the successful propagation of the apoptotic signals. Microarray and real-time PCR analyses demonstrated several ion and water channel genes are regulated upon the onset of lactacystin (a proteosomal inhibitor)-mediated apoptosis. A time course study revealed that gene expressions of water and ion channels are being modulated just prior to apoptosis, some of which are aquaporin 4 and 9, potassium channels and chloride channels. In this review, we shall looked into the molecular protein machineries involved in the execution of AVD in the central nervous system (CNS), and focus on the significance of movements of each cellular component in affecting PCD commitment, thus provide some pharmacological advantages in the global apoptotic cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report synthesis, characterization, and properties of a multifunctional oxalate framework, {KDy(C2O4)2(H2O)4}n (1) (C2O42- = oxalate dianion) composed of two absolutely different metal ions in terms of their size, charge, and electronic configuration. Dehydrated framework (1′) exhibits permanent porosity and interesting solvent (H2O, MeOH, CH3CN, and EtOH) vapor sorption characteristics based on specific interactions with unsaturated alkali metal sites on the pore surface. Compound 1 shows solvent responsive bimodal magnetic and luminescence properties related to the DyIII center. Compound 1 exhibits reversible ferromagnetic to antiferromagnetric phase transition upon dehydration and rehydration, hitherto unknown for any lanthanide based coordination polymer or metal-organic frameworks. Both the compounds 1 and 1′ exhibit slow magnetic relaxation with very high anisotropic barrier (417 ± 9 K for 1 and 418 ± 7 K for 1′) which has been ascribed to the single ion magnetic anisotropy of the DyIII centers. Nevertheless, compound 1 shows a metal based luminescence property in the visible region and H2O molecules exhibit the strongest quenching effect compared to other solvents MeOH, MeCN, and EtOH, evoking 1′ as a potential H2O sensor.