5 resultados para PHASE-EQUILIBRIUM

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract The decomposition sequence of the supersaturated solid solution leading to the formation of the equilibrium S (Al2CuMg) phase in AlCuMg alloys has long been the subject of ambiguity and debate. Recent high-resolution synchrotron powder diffraction experiments have shown that the decomposition sequence does involve a metastable variant of the S phase (denoted S1), which has lattice parameters that are distinctly different to those of the equilibrium S phase (denoted S2). In this paper, the difference between these two phases is resolved using high-resolution synchrotron and neutron powder diffraction and atom probe tomography, and the transformation from S1 to S2 is characterised in detail by in situ synchrotron powder diffraction. The results of these experiments confirm that there are no significant differences between the crystal structures of S1 and S2, however, the powder diffraction and atom probe measurements both indicate that the S1 phase forms with a slight deficiency in Cu. The in situ isothermal aging experiments show that S1 forms rapidly, reaching its maximum concentration in only a few minutes at high temperatures, while complete conversion to the S2 phase can take thousands of hours at low temperature. The kinetics of S phase precipitation have been quantitatively analysed for the first time and it is shown that S1 phase forms with an average activation energy of 75 kJ/mol, which is much lower than the activation energy for Cu and Mg diffusion in an Al matrix (136 kJ/mol and 131 kJ/mol, respectively). The mechanism of the replacement of S1 with the equilibrium S2 phase is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The adsorption equilibria of toluene from aqueous solutions on natural and modified diatomite were examined at different operation parameters such as pH, contact time, initial toluene concentration was evaluated and optimum experimental conditions were identified. The surface area and morphology of the nanoparticles were characterized by SEM, BET, XRD, FTIR and EDX analysis. It was found that in order to obtain the highest possible removal of toluene, the experiments can be carried out at pH 6, temperature 25°C, an agitation speed of 200 rpm, an initial toluene concentration of 150 mg/L, a centrifugal rate of 4000 rpm, adsorbent dosage = 0.1 g and a process time of 90 min. The results of this work show that the maximum percentage removal of toluene from aqueous solution in the optimum conditions for NONMD was 96.91% (145.36 mg/g). Furthermore, under same conditions, the maximum adsorption of natural diatomite was 71.45% (107.18 mg/g). Both adsorption kinetic and isotherm experiments were carried out. The experimental data showed that the adsorption follows the Langmuir model and Freundlich model on natural and modified diatomite respectively. The kinetics results were found to conform well to pseudo-second order kinetics model with good correlation. Thus, this study demonstrated that the modified diatomite could be used as potential adsorbent for removal of toluene from aqueous solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of the nickel(II)/2-hydroxy-5-nonylacetophenone oxime (HNAPO), an active ingredient in LIX 84, extraction system were characterised in a micellar system. The extinction coefficient, λmax of HNAPO (316 nm) and the Ni2+ complex (387 nm) in a neutral micellar system, poly dispersed octa-ethyleneglycol mono-n-dodecyl ether (G12A8) were determined as 3100 and 3500 M−1 cm−1, respectively. HNAPO was found to have a neutral micellar phase and bulk aqueous phase pKa of 11.5 and 12.5, respectively. The extraction equilibrium constant, Kex, was determined to be 10−8.0, and the deviation from theory observed at high pH can be accounted for by consideration of the competition for nickel(II) ions by hydroxide ions and HNAPO. A micellar phase of octa-ethyleneglycol mono-n-dodecyl ether (C12E8) was determined to be an appropriate model of the free oil/water interface from the solubilised location of HNAPO. Utilising the interfacial probe, 4-heptadecyl-7-hydroxy coumarin (HHC) allowed the determination of the electrostatic surface potential of mixed micelles of G12A8 and sodium dodecyl sulphate (SDS) or dodecyl trimethyl ammonium chloride (DTAC). The electrostatic surface potential was a linear function of the number of additional surfactant monomers within the G12A8 micelle, for the concentration range studied. For G12A8/DTAC mixed micelles, the surface potential was given by +1.1 mV per DTAC molecule per micelle, and for G12A8/SDS mixed micelles the relationship was −1.4 mV per SDS molecule per micelle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plausibility of the entropic repulsion of electrical double layers acting to stabilize an equilibrium thickness of intergranular glass films in polycrystalline ceramics is explored. Estimates of the screening length, surface potential, and surface charge required to provide a repulsive force sufficiently large to balance the attractive van der Waals and capillary forces for observable thicknesses of intergranular film are calculated and do not appear to be beyond possibility. However, it has yet to be established whether crystalline particles in a liquid-phase sintering medium possess an electrical double layer at high temperatures. If they do, such a surface charge layer may well have important consequences not only for liquid-phase sintering but also for high-frequency electrical properties and microwave sintering of ceramics containing a liquid phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corticosteroid receptor modulation of mesoaccumbens dopamine neurotransmission is believed to be a key neurobiological mechanism mediating the effects of stress in addiction. Importantly, nucleus accumbens (NAc) subregions (core and shell) are reported to respond differentially to fluctuating basal levels of glucocorticoids, with dopaminergic responses in the core of the NAc being somewhat impervious to fluctuating levels of glucocorticoids relative to the shell. To investigate the corticosteroid receptor mechanisms mediating basal dopamine efflux in the core of the NAc, we have used chronoamperometry in combination with stearate-modified graphite paste electrodes in urethane anesthetized male Long–Evans rats during the peak and nadir of the circadian cycle. Blockade of ventral tegmental area low-affinity glucocorticoid (GR) or high-affinity mineralocorticoid (MR) receptors with mifepristone (1 μg/μl) or spironolactone (0.2 μg/μl), respectively, indicated that endogenous phase-dependent corticosteroid receptor activation (GRs during peak; MRs during nadir) facilitated extracellular NAc dopamine efflux. Conversely, the alternate receptor's actions appeared inhibitory at these time points (MRs during peak; GRs during nadir). Pharmacological activation of either the GR or MR with corticosterone (2 μg/μl) or aldosterone (0.2 μg/μl), respectively, potentiated NAc dopamine efflux, irrespective of circadian phase. Together, these data suggest that dominant corticosteroid receptor activation stimulates tonic mesoaccumbens dopamine transmission, enabling MRs and GRs to differentially maintain basal NAc dopamine release over the course of the circadian cycle. This points to an important molecular mechanism through which relatively stable NAc core dopamine extracellular levels could be maintained in the face of fluctuating corticosterone circadian rhythms.