20 resultados para Onion-like carbon

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical shift in the 129Xe NMR spectrum of adsorbed xenon is very sensitive to the presence of oxygen-containing functional groups on the surface of mesoporous carbon materials. Well-characterized, structurally similar nanodiamond and onion-like carbon samples are considered here as model objects.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uniform hydrangea-like multi-scale carbon hollow submicron spheres (HCSSg) are fabricated by a simple hydrothermal method using glucose as carbon source and fibrous silicon dioxides spheres as shape guide. Structure characterization suggests that petal-like partially graphitized carbon nanosheets with the thickness of about 10 nm arranged in three dimensions (3D) to form the hydrangea-like hollow spheres (size ranging from 250 to 500 nm) with mesoporous channels, which can be conducive to be a high specific surface area (934 m2 g-1) and bulk density (0.87 cm g-3), hierarchical pores structure with good conductivity. As a result, the HCSSg has been demonstrated to be a supercapacitor electrode material with high gravimetric (386 F g-1 at 0.2 A g-1) and outstanding volumetric (335 F cm-3) capacitance, good rate capability and cycling stability with 94% capacitance retention after 5000 cycles in aqueous electrolytes, thus suggesting its application potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rapid economic success achieved by the developing countries in general, and India and China in particular, has brought the issue of climate change, which is a spin-off of development, to the fore. Economic growth is essential for the eradication of poverty and generation of wealth. However, it drives energy consumption and demand for energy which, in turn, produces toxic gases like carbon dioxide (CO2 ). Thus, the price of economic growth is climate change. The paradox lies in the fact that when economic growth is the only solution to poverty, the resultant climate change (characterized by emission of greenhouse gases) also affects the poor greatly. In this context, it is observed that while traditionally the developed countries were charged with polluting the environment globally, now the developing countries have overtaken their counterparts as polluters. The developing countries have emerged, over the years, as the agents responsible for growing pollution in the world, though they are also the victims, as most of the poor people belong to the developing countries. The author explores the nexus between climate change and development in the context of the economic growth of the developing countries and its impact on them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

 The present thesis explores the fabrication of technologically relevant nanocomposites out of a few elastomers and conducting fillers like carbon nanotubes, graphene and polyaniline. The developed materials have good applications in sensors, shape memory devices and capacitors. Different characterization methods reveal the influence of filler-elastomer interactions on the various properties of the obtained nanocomposites as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ti and Ti-based alloys have unique properties such as high strength, low density and excellent corrosion resistance. These properties are essential for the manufacture of lightweight and high strength components for biomedical applications. In this paper, Ti properties such as metallurgy, mechanical properties, surface modification, corrosion resistance, biocompatibility and osseointegration in biomedical applications have been discussed. This paper also analyses the advantages and disadvantages of various Ti manufacturing processes for biomedical applications such as casting, powder metallurgy, cold and hot working, machining, laser engineering net shaping (LEN), superplastic forming, forging and ring rolling. The contributions of this research are twofold, firstly scrutinizing the behaviour of Ti and Ti-based alloys in-vivo and in-vitro experiments in biomedical applications to determine the factors leading to failure, and secondly strategies to achieve desired properties essential to improving the quality of patient outcomes after receiving surgical implants. Future research will be directed toward manufacturing of Ti for medical applications by improving the production process, for example using optimal design approaches in additive manufacturing and investigating alloys containing other materials in order to obtain better medical and mechanical characteristics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The modification of glassy carbon electrodes with random dispersions of nanotubes is currently the most popular approach to the preparation of carbon nanotube modified electrodes. The performance of glassy carbon electrodes modified with a random dispersion of bamboo type carbon nanotubes was compared with single walled carbon nanotubes modified glassy carbon electrodes and bare glassy carbon electrodes. The electrochemical performance of all three types for electrode were compared by investigating the electrochemistry with solution species and the oxidation of guanine and adenine bases of surface adsorbed DNA. The presence of edge planes of graphene at regular intervals along the walls of the bamboo nanotubes resulted in superior electrochemical performance relative to SWNT modified electrodes from two aspects. Firstly, with solution species the peak separation of the oxidation and reduction waves were smaller indicating more rapid rates of electron transfer. Secondly, a greater number of electroactive sites along the walls of the bamboo-carbon nanotubes (BCNTs) resulted in larger current signals and a broader dynamic range for the oxidation of DNA bases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new approach of heterogenous photocatalysis using titanium dioxide pellets was explored. It was found to be attractive for use in photocatalytic reduction of carbon dioxide with wavelength and temperature being crucial factors. The study also proposes a kinetic modelling for the process to simulate the product-yield profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are nanoscale cylinders of graphene with exceptional properties such as high mechanical strength, high aspect ratio and large specific surface area. To exploit these properties for membranes, macroscopic structures need to be designed with controlled porosity and pore size. This manuscript reviews recent progress on two such structures: (i) CNT Bucky-papers, a non-woven, paper like structure of randomly entangled CNTs, and (ii) isoporous CNT membranes, where the hollow CNT interior acts as a membrane pore. The construction of these two types of membranes will be discussed, characterization and permeance results compared, and some promising applications presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT) Bucky-Paper (BP) composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90%) and specific surface area (>400 m2/g). Furthermore, their pore size is generally between 20–50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this investigation, carbon-coated LiFePO4 cathode materials were synthesized with a facile hydrothermal method. The structure and electrochemical properties of the materials were investigated by X-ray diffraction (XRD), Roman, transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS), and electrochemical impedance spectroscopy (EIS). By adjusting the mixing concentration of starting materials, a single-crystalline LiFePO4 with an anisotropic rhombus morphology (Space Group: Pmnb No. 62) were successfully synthesized. In addition, the carbon coated on the surface of LiFePO4 material prepared has a lower ID/IG (0.80), which indicates an optimized carbon structure with an increased amount of sp2-type carbon. Electrochemical performance test shows that the carbon-coated LiFePO4 cathode materials have an initial discharge capacity of 146 mAh g−1 at 0.2C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phonon properties of boron nitride nanotubes (BNNTs) were investigated using Raman spectroscopy at different temperatures and new sp3- bonded BN vibrations were identified. The Raman peak of the E2g mode of BNNTs is found to be downshifted and broadened compared to that of hexagonal BN at the same temperature. By increasing the temperature, the energy of the E2g mode and the sp3-bonding mode are downshifted, with the temperature coefficients being -0.010 and -0.069cm-1/K, respectively. We attribute this downshifting to anharmonic effects as well as the elongation of the B-N bond in BNNT structures with increasing temperature. © 2014 The Japan Society of Applied Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intrinsic stress, film density and nitrogen content of carbon nitride (CNx) films deposited from a filtered cathodic vacuum arc were determined as a function of substrate bias, substrate temperature and nitrogen process pressure. Contour plots of the measurements show the deposition conditions required to produce the main structural forms of CNx including N-doped tetrahedral amorphous carbon (ta-C:N) and a variety of nitrogen containing graphitic carbons. The film with maximum nitrogen content (~ 30%) was deposited at room temperature with 1.0 mTorr N2 pressure and using an intermediate bias of - 400 V. Higher nitrogen pressure, higher bias and/or higher temperature promoted layering with substitutional nitrogen bonded into graphite-like sheets. As the deposition temperature exceeded 500 °C, the nitrogen content diminished regardless of nitrogen pressure, showing the meta-stability of the carbon-nitrogen bonding in the films. Hardness and ductility measurements revealed a diverse range of mechanical properties in the films, varying from hard ta-C:N (~ 50 GPa) to softer and highly ductile CN x which contained tangled graphite-like sheets. Through-film current-voltage characteristics showed that the conductance of the carbon nitride films increased with nitrogen content and substrate bias, consistent with the transition to more graphite-like films. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Novel magnetite-carbon nanofiber hybrids (denoted by Fe3O4@CNFs) have been developed by coating carbon nanofibers (CNFs) with magnetite nanoparticles in order to align CNFs in epoxy using a relatively weak magnetic field. Experimental results have shown that a weak magnetic field (∼mT) can align these newly-developed nanofiber hybrids to form a chain-like structure in the epoxy resin. Upon curing, the epoxy nanocomposites containing the aligned Fe3O4@CNFs show (i) greatly improved electrical conductivity in the alignment direction and (ii) significantly higher fracture toughness when the Fe3O4@CNFs are aligned normal to the crack surface, compared to the nanocomposites containing randomly-oriented Fe3O4@CNFs. The mechanisms underpinning the significant improvements in the fracture toughness have been identified, including interfacial debonding, pull-out, crack bridging and rupture of the Fe3O4@CNFs, and plastic void growth in the polymer matrix.