68 resultados para NANOCRYSTALLINE

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO nanocrystalline powders doped with up to 5 at% manganese were synthesized and their photocatalytic activity was studied. Doped ZnO powders were prepared using a sol-gel process. The crystal structure and grain size of the particles were characterized by X-ray diffractometry and optical properties were studied using UV-Vis spectroscopy. The photoactivity of undoped and doped ZnO nanocrystalline powders was evaluated by monitoring the photo-bleaching of the aqueous solutions of Rhodamine B dye in the presence of ZnO under simulated sunlight. The results showed that up to 3 at% manganese were successfully doped into the nanocrystalline ZnO and that manganese-doping reduced the photocatalytic activity of ZnO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Raman and photoluminescence (PL) spectra of nanocrystalline zinc oxide produced by mechanochemical synthesis were measured using a pulsed nitrogen laser (337.1 nm) and xenon lamp (360 nm) as excitation sources in PL measurements and a cw Nd:YAG laser in Raman measurements. PL was observed in the range 400–800 nm. The Raman spectrum of nanocrystalline (90 nm) ZnO was compared to that of coarsegrained ZnO. The Raman bands of nanocrystalline zinc oxide were found to be shifted to lower frequencies and broadened. Laser radiation was shown to cause local heating of zinc oxide up to 1000 K, resulting in photoinduced formation of zinc nanoclusters. Mixtures of zinc oxide and sodium chloride powders are heated to substantially lower temperatures. Under nitrogen laser excitation, the green PL band (535 nm), characteristic of bulk ZnO, is shifted to longer wavelengths by 85 nm. The results are interpreted in terms of light confinement in zinc oxide microclusters consisting of large number of nanocrystallites. The photoinduced processes in question may be a viable approach to producing metal-insulator structures in globular photonic crystals, opals, filled with zinc oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticulate TiO2 is of interest for a variety of technological applications, including optically transparent UV-filters and photocatalysts for the destruction of chemical waste. The successful use of nanoparticulate TiO2 in such applications requires an understanding of how the synthesis conditions effect the optical and photocatalytic properties. In this study, we have investigated the effect of heat treatment temperature on the properties of nanoparticulate TiO2 powders that were synthesised by solid-state chemical reaction of anhydrous TiOSO4 with Na2CO3. It was found that the photocatalytic activity increased with the heat treatment temperature up to a maximum at 600 °C and thereafter declined. In contrast, the optical transparency decreased monotonically with the heat treatment temperature. These results indicate that solid-state chemical reaction can be used to prepare powders of nanoparticulate TiO2 with properties that are optimised for use as either optically transparent UV-filters or photocatalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanochemical processing of anhydrous chloride precursors with Na2CO3 has been investigated as a means of manufacturing nanocrystalline SnO2 doped ZnO photocatalysts. High-energy milling and heat-treatment of a 0.1SnCl2+0.9ZnCl2+Na2CO3+4NaCl reactant mixture was found to result in the formation of a composite powder consisting of oxide grains embedded within a matrix of NaCl. Subsequent washing with deionized water resulted in removal of the NaCl matrix phase and partial hydration of the oxide reaction product with the consequent formation of ZnSn(OH)6. The extent of this hydration reaction was found to decrease in a linear fashion with the temperature of the post-milling heat-treatment over the range of 400–700 °C. For a heat-treatment temperature of 700 °C, the SnO2 doped ZnO powder was found to exhibit significantly higher photocatalytic activity than either single-phase SnO2 or ZnO powders that were synthesized using similar processing conditions. The heightened photocatalytic activity of the SnO2 doped ZnO was attributed to its higher specific surface area and the enhanced charge separation arising from the coupling of ZnO with SnO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanochemical processing of zirconium and yttrium chloride precursors with lithium hydroxide has been used to synthesise ultrafine powders of yttria-stabilised zirconia. The precursors reacted during milling to form a composite consisting of nanocrystalline oxide grains embedded within a matrix of lithium chloride. The ultrafine powder was recovered subsequently by removing the lithium chloride through washing with deionised water and methanol. The powders were characterised using X-ray diffraction (XRD), transmission electron microscopy (TEM), and BET gas adsorption. The sintering behaviour of cold pressed pellets was examined by dilatometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distinct mesotexture seen in a nanocrystalline Ni–20Fe electrodeposit is described. The texture is characterized by a 0 0 1fibre axis perpendicular to the local curvature of the nodule growth surface. Each nodule contains of the order of 108 grains over its growth interface. The texture shows some similarity to traditional cobblestone patterns. Similar forms of mesotextures are likely to be ubiquitous in nanocrystalline electrodeposits and can be expected to affect the homogeneity and, possibly, anisotropy of the mechanical response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ball milling of zinc powders in oxygen atmosphere leads to nanocrystalline ZnO. The average grain size has a value of 9 nm. The zinc oxidation proceeds gradually. It is compared with the combustion oxidation reactions of metals (Zr, Ti, Fe and Sn) reported previously. We propose a new parameter ΔH/Cp(metal) instead of simplified adiabatic temperature to judge if the mechanochemical oxidation of a particular metal happens via gradual or combustion reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-performance dye-sensitized solar cells incorporating electrochemically stable non-volatile electrolytes are especially desirable devices. In particular, ionic liquid systems based on ethylmethylimidazolium dicyanamide seem to be promising for this purpose. These have triggered our interest in the properties of further ethylmethylimidazolium-based ionic liquids with anions which are close relatives of dicyanamide. In this study, the effect of three different anions, tricyanomethanide, dicyanamide and thiocyanate, on the performance of dye-sensitized solar cells have been investigated. Both the short circuit photocurrent and conversion efficiency are increased with decreasing viscosity of the ionic liquids under comparable conditions. A conversion efficiency of 2.1% at 30% light intensity was observed for the cell containing the tricyanomethanide salt, which has lowest viscosity among the three ionic liquids, while efficiencies of 0.7% and 1.7% at the same light intensity were observed in the case of dicyanamide and thiocyanate salts, respectively, as an electrolyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vanadium nitride (VN) is currently one of the most promising materials for electrodes of supercapacitors. The structure and electrochemical properties of VN synthesized by temperature-programmed NH3 reduction of V2O5 are analyzed in this paper. Vanadium nitride produced via this route has distinctive structural characteristics. VN mimics the shape of the initial V2O5 precursor indicating a pronounced direct attachment of nitride grains. The particles have domains of grains with a preferential orientation (texture). The large volume of pores in VN is represented by the range of 15−110 nm. VN demonstrates capacitive properties in three different types of aqueous electrolytes, 1 M KOH, 1 M H2SO4, and 3 M NaCl. The material has an acceptable rate capability in all electrolytes, showing about 80% of its maximal capacitance at a current load of 1 A/g in galvanostatic charging/discharging experiments. The capacitance of 186 F/g is observed in 1 M KOH electrolyte at 1 A/g. The previously reported negative effect of material loading on the capacitance is significantly suppressed. The observed electrochemical characteristics related to the application of this material in supercapacitors can be correlated with the crystalline structure of the nitride and the composition of its surface layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In present study, the formation of bioactive anatase on bulk titanium (Ti) by hybrid surface mechanical attrition treatment (SMAT) is reported. A commercial pure Ti plate first underwent SMAT in a vacuum for 1 h to produce a nanocrystalline layer with a thickness of about 30 µm, and then the nanocrystalline Ti (30 nm) was transformed into mesoporous anatase with a grain size 10 nm by chemical oxidation and calcination. The mesoporous anatase showed excellent bioactivity while being soaked in simulated body fluid, which could be attributed to the unique nanostructure on the SMAT Ti surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface mechanical attrition treatment (SMAT), a novel surface severe plastic deformation method, was carried out for titanium (Ti) to create a gradient-structured Ti (SMAT Ti). The tribological behaviour was studied under different loads and dry sliding conditions. The results showed that the deformation layer of SMAT Ti was about 160 μm. The friction and wear results showed that the wear resistance of SMAT Ti was enhanced compared to the coarse-grained (CG) counterpart. SMAT Ti showed abrasive wear under 1 and 5 N, and exhibited abrasive and adhesive wear under 2 N. While CG Ti showed abrasive and adhesive wear under 1-2 N, and exhibited abrasive wear under 5 N for the work hardening effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nanocrystalline (NC) layer with the thickness of 30 µm was produced on pure titanium surface by surface mechanical attrition treatment (SMAT). Microstructure observation indicated that the grain size increases with depth from the treated surface. The friction coefficient decreases and the wear resistance increases with the SMAT sample as compared to its coarse-grained counterpart. The improvement of the wear properties could be attributed to the higher hardness of SMAT sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The collection contains EBSD maps of annealed nanocrystalline Ni and Ni-Fe alloys. The maps show the variation of crystallographic texture across mesoscale colonies within these alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This data includes transmission electron microscopy orientation maps of the received electrodeposited nanocrystalline nickel. The data was obtained using the Nanomegas Digitstar System which is currently the only equipment of this type available in Australia. The data has been acquired with steps in nanometre scale and enables the determination of local microtexture of the specimens.